【題目】如圖是某校舉行歌唱比賽時,七位評委為某位選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)依次為( )
A.87,86
B.83,85
C.88,85
D.82,86
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形和等邊三角形中, ,平面平面.
(1)在上找一點,使,并說明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC= .
(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點,H為BC中點,求異面直線AB與FH所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線y=1所得線段的長度為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓C于A,B兩點,交y軸于點M.點N是M關(guān)于O的對稱點,⊙N的半徑為|NO|. 設(shè)D為AB的中點,DE,DF與⊙N分別相切于點E,F,求EDF的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大小;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某種信息傳輸過程中,用4個數(shù)字的一個排列(數(shù)字允許重復(fù))表示一個信息,不同排列表示不同信息.若所用數(shù)字只有0和1,則與信息0110至多有兩個對應(yīng)位置上的數(shù)字相同的信息個數(shù)為 ( )
A.10
B.11
C.12
D.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足對任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0,
(1)求f(1)和f(﹣1)的值;
(2)試判斷f(x)的奇偶性,并加以證明;
(3)若x≥0時f(x)為增函數(shù),求滿足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com