【題目】批次的種燈泡個,對其命進行追蹤調(diào)查,將結(jié)果列頻率分布表如下,根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三級,其中大于或等于的燈泡優(yōu)等品,小于的燈泡次品,余的燈泡是正.

(天)

頻數(shù)

頻率

合計

(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;

(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;

(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求的最小值.

【答案】(1);(2);(3)10.

【解析】試題分析: (1) 由頻率分布表中的數(shù)據(jù),求出的值;(2)根據(jù)頻率分布表中的數(shù)據(jù),求出此人購買的燈泡怡好不是次品的概率;(3)由這批燈泡中優(yōu)等品、正品和次品的比例數(shù),再按分層抽樣方法,求出購買燈泡數(shù)的最小值.

試題解析:(1).

(2)設(shè)“此人購買的燈泡恰好不是次品”為事件,由表可知:這批燈泡中優(yōu)等品有60個,正品有100個,次品有40個,所以此人購買的燈泡恰好不是次品的概率為.

(3)由表,得這批燈泡中優(yōu)等品、正品和次品的比例為,所以按分層抽樣法,購買的燈泡數(shù),所以的最小值為10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )=

(1)求ω和φ的值;
(2)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 是參數(shù))和定點 , F1 , F2 是圓錐曲線的左、右焦點.
(1)求經(jīng)過點 F2 且垂直于直線 AF1 的直線 l 的參數(shù)方程;
(2)設(shè) P 為曲線 C 上的動點,求 P 到直線 l 距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和等邊三角形中, ,平面平面

(1)在上找一點,使,并說明理由;

(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察研究某種植物的生長速度與溫度的關(guān)系,經(jīng)過統(tǒng)計,得到生長速度(單位:毫米/月)與月平均氣溫的對比表如下:

溫度

-5

0

6

8

12

15

20

生長速度

2

4

5

6

7

8

10

(1)求生長速度關(guān)于溫度的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);

(2)利用(1)中的線性回歸方程,分析氣溫從時生長速度的變化情況,如果某月的平均氣溫是時,預(yù)測這月大約能生長多少.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=

(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點,H為BC中點,求異面直線AB與FH所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)圖象上的點(1,﹣ )處的切線斜率為﹣4,
(1)求f(x)的表達式.
(2)求y=f(x)在區(qū)間[﹣3,6]上的最值.

查看答案和解析>>

同步練習(xí)冊答案