【題目】如圖,在幾何體中,四邊形為矩形,且,為的中點.
(1)求證:平面;
(2)若平面平面,,,求三棱錐的體積.
【答案】(1)證明見解析(2)
【解析】
(1)取A1B1中點F,連接EF,FC1, 證明CE∥C1F,即可證明線面平行;
(2)根據(jù)三棱錐的等積法得,即可求得答案.
(1)證明 如圖,取A1B1中點F,連接EF,FC1,
∵E為AB1中點,∴EF//A1A且EF= A1A,
∵AA1∥CC1且AA1=2CC1,
∴EF//CC1且EF=CC1,即四邊形EFC1C為平行四邊形,
∴CE∥C1F.
∵,,
∴CE∥平面A1B1C1.
(2) ∵平面AB B1A1⊥平面ABC,交線為AB
又矩形AB B1A1中A A1⊥AB,∴AA1⊥平面ABC,
∵AA1∥CC1,∴CC1⊥平面ABC,
∵BB1∥CC1,,,
∴BB1∥,
∴
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面平面,.
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在點,使得平面?若存在, 求的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年1月14日,國防科工局宣布,嫦娥四號任務已經(jīng)通過了探月工程重大專項領導小組審議通過,正式開始實施.如圖所示,假設“嫦娥四號”衛(wèi)星將沿地月轉移軌道飛向月球后,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行.若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸長,給出下列式子:
①a1+c1=a2+c2; ②a1-c1=a2-c2; ③c1a2>a1c2. ④
其中正確式子的序號是( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,且圓過橢圓的上,下頂點.
(1)求橢圓的方程.
(2)若直線的斜率為,且直線交橢圓于、兩點,點關于點的對稱點為,點是橢圓上一點,判斷直線與的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(、為實常數(shù)).
(1)當時,證明:不是奇函數(shù);
(2)設是奇函數(shù),求與的值;
(3)當是奇函數(shù)時,研究是否存在這樣的實數(shù)集的子集,對任何屬于的、,都有成立?若存在試找出所有這樣的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的值域為.
(1)判斷此函數(shù)的奇偶性,并說明理由;
(2)判斷此函數(shù)在的單調性,并用單調性的定義證明你的結論;
(3)求出在上的最小值,并求的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以O為極點,x軸非負半軸為極軸建立極坐標系圓C的極坐標方程為,直線的參數(shù)方程為(t為參數(shù)),直線和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(1)求圓C及直線的直角坐標方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標系中的“太極圖”,整個圖形是一個圓形,其中黑色陰影區(qū)域在y軸右側部分的邊界為一個半圓.給出以下命題:
①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是;
②當時,直線與黑色陰影部分有公共點;
③黑色陰影部分中一點,則的最大值為2.
其中所有正確結論的序號是( )
A.①B.②C.①③D.①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在底面為正方形的四棱錐中,平面平面分別為棱和的中點.
(1)求證:平面;
(2)若直線與所成角的正切值為,求平面與平面所成銳二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com