【題目】已知y=ax2+bx(a<0)通過(guò)點(diǎn)(1,2),且其圖象與y=﹣x2+2x的圖象有二個(gè)交點(diǎn)(如圖所示).

(1)求y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(2)當(dāng)a,b為何值時(shí),S取得最小值.

【答案】
(1)解:由y=ax2+bx通過(guò)點(diǎn)(1,2)可得a+b=2

即b=2﹣a,由 ,解得

則y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數(shù)關(guān)系為


(2)解:由 ,得 ,

由S'=0得a=﹣3,a=﹣1,

當(dāng)a=﹣1時(shí),兩曲線只有一個(gè)交點(diǎn),不合題意.

當(dāng)a<﹣3,S'<0,當(dāng)a>﹣3S'>0,

所以當(dāng)a=﹣3時(shí),S取得極小值,即最小值,此時(shí)b=2﹣a=5,


【解析】(1)有已知可得其中一個(gè)交點(diǎn)是原點(diǎn),把另一個(gè)交點(diǎn)表示出來(lái),再利用定積分把面積表示處理即可;(2)結(jié)合(1)利用導(dǎo)數(shù)求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓 的公共弦長(zhǎng)為.

(1)求橢圓的方程.

(2)經(jīng)過(guò)原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , 三點(diǎn)共線..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓”,那么(
A.甲是乙成立的充分不必要條件
B.甲是乙成立的必要不充分條件
C.甲是乙成立的充要條件
D.甲是乙成立的非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于某種商品開(kāi)始收稅,使其定價(jià)比原定價(jià)上漲x成(即上漲率為 ),漲價(jià)后商品賣出的個(gè)數(shù)減少bx成,稅率是新價(jià)的a成,這里a,b均為常數(shù),且a<10,用A表示過(guò)去定價(jià),B表示過(guò)去賣出的個(gè)數(shù).
(1)設(shè)售貨款扣除稅款后,剩余y元,求y關(guān)于x的函數(shù)解析式;
(2)要使y最大,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=(x3﹣1)2+1,下列結(jié)論中正確的是(
A.x=1是函數(shù)f(x)的極小值點(diǎn),x=0是函數(shù)f(x)的極大值點(diǎn)
B.x=1及x=0均是函數(shù)f(x)的極大值點(diǎn)
C.x=1是函數(shù)f(x)的極大值點(diǎn),x=0是函數(shù)f(x)的極小值點(diǎn)
D.x=1是函數(shù)f(x)的極小值點(diǎn),函數(shù)f(x)無(wú)極大值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為上位于第一象限的任意一點(diǎn),過(guò)點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn).

(1)若當(dāng)點(diǎn)的橫坐標(biāo)為,且為等腰三角形,求的方程;

(2)對(duì)于(1)中求出的拋物線,若點(diǎn),記點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為軸于點(diǎn),且,求證:點(diǎn)的坐標(biāo)為,并求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于 兩點(diǎn),且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的單調(diào)區(qū)間;

)設(shè)函數(shù)在點(diǎn)處的切線為,直線軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,“厲行節(jié)約,反對(duì)浪費(fèi)”之風(fēng)悄然吹開(kāi),某市通過(guò)隨機(jī)詢問(wèn)100名性別不同的居民是否能做到“光盤”行動(dòng),得到如下的列聯(lián)表:

做不到“光盤”

能做到“光盤”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:
參照附表,得到的正確結(jié)論是(
A.在犯錯(cuò)誤的概率不超過(guò)l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別無(wú)關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無(wú)關(guān)”

查看答案和解析>>

同步練習(xí)冊(cè)答案