【題目】平面內(nèi)有兩定點(diǎn)A、B及動(dòng)點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓”,那么( )
A.甲是乙成立的充分不必要條件
B.甲是乙成立的必要不充分條件
C.甲是乙成立的充要條件
D.甲是乙成立的非充分非必要條件
【答案】B
【解析】解:命題甲是:“|PA|+|PB|是定值”,
命題乙是:“點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓
∵當(dāng)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)距離之和等于定值時(shí),
再加上這個(gè)和大于兩個(gè)定點(diǎn)之間的距離,
可以得到動(dòng)點(diǎn)的軌跡是橢圓,沒(méi)有加上的條件不一定推出,
而點(diǎn)P的軌跡是以A.B為焦點(diǎn)的橢圓,一定能夠推出|PA|+|PB|是定值,
∴甲是乙成立的必要不充分條件
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的概念(平面內(nèi)與兩個(gè)定點(diǎn),的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡稱(chēng)為橢圓,這兩個(gè)定點(diǎn)稱(chēng)為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱(chēng)為橢圓的焦距).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知( ﹣ )n的展開(kāi)式中,第三項(xiàng)的系數(shù)為144.
(1)求該展開(kāi)式中所有偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(2)求該展開(kāi)式的所有有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足 >0,f(2﹣x)=f(x)e2﹣2x則下列判斷一定正確的是( )
A.f(1)<f(0)
B.f(3)>e3f(0)
C.f(2)>ef(0)
D.f(4)<e4f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據(jù)以往經(jīng)驗(yàn)?zāi)尺x手投擲一次命中8環(huán)以上的概率為.現(xiàn)采用計(jì)算機(jī)做模擬實(shí)驗(yàn)來(lái)估計(jì)該選手獲得優(yōu)秀的概率: 用計(jì)算機(jī)產(chǎn)生0到9之間的隨機(jī)整數(shù),用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下 20 組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
據(jù)此估計(jì),該選手投擲 1 輪,可以拿到優(yōu)秀的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明. 下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱(chēng)為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱(chēng)為朱實(shí)、黃實(shí),利用勾股+(股-勾)朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn),得勾2+股2=弦2. 設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. 134 B. 866 C. 300 D. 500
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的左焦點(diǎn)與拋物線的焦點(diǎn)重合,直線與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.
(Ⅰ)求該橢圓的方程;
(Ⅱ)設(shè)點(diǎn)坐標(biāo)為,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸長(zhǎng)為 ,過(guò)右焦點(diǎn)F的直線l與C相交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)P在橢圓C上,且 = + ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=ax2+bx(a<0)通過(guò)點(diǎn)(1,2),且其圖象與y=﹣x2+2x的圖象有二個(gè)交點(diǎn)(如圖所示).
(1)求y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(2)當(dāng)a,b為何值時(shí),S取得最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com