已知一扇形的半徑為2,面積為4,則此扇形圓心角的絕對值為
 
弧度.
考點:扇形面積公式
專題:
分析:設(shè)扇形的弧長為l,根據(jù)扇形的半徑和面積,利用扇形面積公式列式算出l=4,再由弧度的定義加以計算,即可得到該扇形的圓心角的弧度數(shù).
解答: 解:設(shè)扇形的圓心角的弧度數(shù)是α,弧長為l
∵扇形的半徑長r=2,面積S=4,
∴S=
1
2
lr,即4=
1
2
×l×2,解之得l=4
因此,扇形圓心角的弧度數(shù)是α=
l
r
=
4
2
=2.
故答案為:2.
點評:本題給出扇形的半徑和面積,求圓心角的大。疾榱松刃蔚拿娣e公式和弧度制的定義等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)左右頂點,B(2,0)過橢圓C的右焦點F的直線交橢圓與M,N,交直線x=4于點P,且直線PA,PF,PB的斜率成等差數(shù)列,T(
1
4
,0)點是定點
(1)求橢圓C的方程;
(2)求三角形MNT面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列5個命題:
①函數(shù)y=|sin(2x-
π
12
)|的最小正周期
π
2
是;
②直線x=
12
是函數(shù)y=2sin(3x-
π
4
)的一條對稱軸;
③函數(shù)y=
1
2
sin2x-x有三個零點;
④若sinα+cosα=-
1
5
,且α為第二象限角,則tanα=
3
4
;
⑤函數(shù)y=cos(2x-3)在區(qū)間(
2
3
,3)上單調(diào)遞減.
其中正確的是
 
(填出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
4
-
y2
9
=1
的漸近線方程是( 。
A、y=±
2
3
x
B、y=±
3
2
x
C、y=±
4
9
x
D、y=±
9
4
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點作垂直x軸的直線與橢圓有四個交點,這四個交點恰好為正方形的四個頂點,則橢圓的離心率為( 。
A、
5
+1
2
B、
5
-1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有3個紅球和5個黑球,大小形狀一樣,一次性從中摸出兩個球,
(Ⅰ)摸出的兩個球均為紅球的概率
(Ⅱ)摸出的兩個球顏色不同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x-1≤0
y-1≤0
x+y-1≥0.
則目標函數(shù)z=(
1
4
)x•(
1
2
)y
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的長軸長為10,一個焦點坐標為(4,0),則它的標準方程為( 。
A、
x2
5
+
y2
3
=1
B、
x2
25
+
y2
9
=1
C、
y2
25
+
x2
9
=1
D、
y2
5
+
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(2a-1)x-3
(Ⅰ)當a=2時,若∈[-2,3],求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)在[-2,3]上的最小值為g(a).
①求函數(shù)g(a)的表達式;
②是否存在實數(shù)a,使得g(a)=1,若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案