【題目】已知A、B、C是橢圓W:上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.
【答案】(I)(II) 不可能是菱形
【解析】
解:(1)橢圓W:+y2=1的右頂點(diǎn)B的坐標(biāo)為(2,0).
因?yàn)樗倪呅?/span>OABC為菱形,所以AC與OB相互垂直平分.
所以可設(shè)A(1,m),
代入橢圓方程得+m2=1,即m=±.
所以菱形OABC的面積是
|OB|·|AC|=×2×2|m|=.
(2)四邊形OABC不可能為菱形.理由如下:
假設(shè)四邊形OABC為菱形.
因?yàn)辄c(diǎn)B不是W的頂點(diǎn),且直線AC不過(guò)原點(diǎn),
所以可設(shè)AC的方程為y=kx+m(k≠0,m≠0).
由
消y并整理得(1+4k2)x2+8kmx+4m2-4=0.
設(shè)A(x1,y1),C(x2,y2),則=-,=k·+m=.
所以AC的中點(diǎn)為M.
因?yàn)?/span>M為AC和OB的交點(diǎn),
所以直線OB的斜率為-.
因?yàn)?/span>k·≠-1,所以AC與OB不垂直.
所以四邊形OABC不是菱形,與假設(shè)矛盾.
所以當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),四邊形OABC不可能是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是圓的直徑,點(diǎn)是圓上異于,的點(diǎn),直線平面,,分別是,的中點(diǎn).
(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;
(Ⅱ)設(shè),求二面角大小的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0),定義橢圓C上的點(diǎn)M(x0,y0)的“伴隨點(diǎn)”為.
(1)求橢圓C上的點(diǎn)M的“伴隨點(diǎn)”N的軌跡方程;
(2)如果橢圓C上的點(diǎn)(1,)的“伴隨點(diǎn)”為(,),對(duì)于橢圓C上的任意點(diǎn)M及它的“伴隨點(diǎn)”N,求的取值范圍;
(3)當(dāng)a=2,b=時(shí),直線l交橢圓C于A,B兩點(diǎn),若點(diǎn)A,B的“伴隨點(diǎn)”分別是P,Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,求△OAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);
(2)若對(duì)任意的,成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),下列命題:
①既不是奇函數(shù),也不是偶函數(shù)
②若是三角形的內(nèi)角,則是增函數(shù)
③若是三角形的內(nèi)角, 則有最大值而無(wú)最小值
④的最小正周期是
其中真命題的序號(hào)是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有、兩個(gè)自習(xí)教室,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個(gè)教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不垂直的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)函數(shù)在處的切線過(guò)點(diǎn),求的方程;
(2)若且函數(shù)有兩個(gè)零點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com