【題目】已知A、B、C是橢圓W上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).

(I)當(dāng)點(diǎn)BW的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.

(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

【答案】(I)(II) 不可能是菱形

【解析】

解:(1)橢圓Wy21的右頂點(diǎn)B的坐標(biāo)為(2,0)

因?yàn)樗倪呅?/span>OABC為菱形,所以ACOB相互垂直平分.

所以可設(shè)A(1,m)

代入橢圓方程得m21,即m±.

所以菱形OABC的面積是

|OB|·|AC|×2×2|m|.

(2)四邊形OABC不可能為菱形.理由如下:

假設(shè)四邊形OABC為菱形.

因?yàn)辄c(diǎn)B不是W的頂點(diǎn),且直線AC不過(guò)原點(diǎn),

所以可設(shè)AC的方程為ykxm(k≠0,m≠0)

y并整理得(14k2)x28kmx4m240.

設(shè)A(x1,y1)C(x2,y2),則=-,m.

所以AC的中點(diǎn)為M.

因?yàn)?/span>MACOB的交點(diǎn),

所以直線OB的斜率為-.

因?yàn)?/span>1,所以ACOB不垂直.

所以四邊形OABC不是菱形,與假設(shè)矛盾.

所以當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),四邊形OABC不可能是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,點(diǎn)是圓上異于的點(diǎn),直線平面,分別是的中點(diǎn).

(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;

(Ⅱ)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C =1ab0),定義橢圓C上的點(diǎn)Mx0y0)的“伴隨點(diǎn)”為

1)求橢圓C上的點(diǎn)M的“伴隨點(diǎn)”N的軌跡方程;

2)如果橢圓C上的點(diǎn)(1,)的“伴隨點(diǎn)”為(,),對(duì)于橢圓C上的任意點(diǎn)M及它的“伴隨點(diǎn)”N,求的取值范圍;

3)當(dāng)a=2,b=時(shí),直線l交橢圓CA,B兩點(diǎn),若點(diǎn)A,B的“伴隨點(diǎn)”分別是PQ,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);

2)若對(duì)任意的,成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),下列命題:

既不是奇函數(shù),也不是偶函數(shù)

②若是三角形的內(nèi)角,是增函數(shù)

③若是三角形的內(nèi)角, 有最大值而無(wú)最小值

的最小正周期是

其中真命題的序號(hào)是(

A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有、兩個(gè)自習(xí)教室,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個(gè)教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,NQ為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不垂直的是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)函數(shù)處的切線過(guò)點(diǎn),求的方程;

2)若且函數(shù)有兩個(gè)零點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案