【題目】已知函數(shù).
(1)當(dāng)時,求的極值;
(2)討論的單調(diào)性.
【答案】(1)當(dāng)時,的極大值為9;當(dāng)時,的極小值為
(2)①當(dāng)時,在R是增函數(shù).
②當(dāng)時,的單調(diào)增區(qū)間為:,;
單調(diào)減區(qū)間為:
【解析】
(1)代入,求導(dǎo)后得,再列表分析各區(qū)間上導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性與極值即可.
(2)求導(dǎo)后再根據(jù)導(dǎo)函數(shù)有無零點(diǎn)討論a的取值,再求解導(dǎo)數(shù)大于零,得遞增區(qū)間,導(dǎo)數(shù)小于零得遞減區(qū)間.
解:(1)當(dāng)時,,則
令得,得,
則x,,的關(guān)系如下:
x | 1 | ||||
0 | 0 | ||||
增 | 9 | 減 | 增 |
所以,當(dāng)時,的極大值為9;當(dāng)時,的極小值為.
(2),
,
①當(dāng)時,,且僅當(dāng),時,所以在R是增函數(shù),
②當(dāng)時,有兩個根,,,
當(dāng)時,得或,所以的單調(diào)增區(qū)間為:,;
當(dāng)時,得,所以的單調(diào)減區(qū)間為:.
綜上所述, ①當(dāng)時,在R是增函數(shù).
②當(dāng)時,的單調(diào)增區(qū)間為:,;
單調(diào)減區(qū)間為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱中,為的中點(diǎn),點(diǎn)在側(cè)棱上,平面
(1) 證明:是的中點(diǎn);
(2) 設(shè),四邊形為邊長為4正方形,四邊形為矩形,且異面直線與所成的角為,求該三棱柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東西向的鐵路上有兩個道口、,鐵路兩側(cè)的公路分布如圖,位于的南偏西,且位于的南偏東方向,位于的正北方向,,處一輛救護(hù)車欲通過道口前往處的醫(yī)院送病人,發(fā)現(xiàn)北偏東方向的處(火車頭位置)有一列火車自東向西駛來,若火車通過每個道口都需要分鐘,救護(hù)車和火車的速度均為.
(1)判斷救護(hù)車通過道口是否會受火車影響,并說明理由;
(2)為了盡快將病人送到醫(yī)院,救護(hù)車應(yīng)選擇、中的哪個道口?通過計算說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2ACAB,若四面體P﹣ABC的體積為,則該球的體積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的前項和為,且函數(shù),若方程至少有三個實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某濕地公園的鳥瞰圖是一個直角梯形,其中:,,,長1千米,長千米,公園內(nèi)有一個形狀是扇形的天然湖泊,扇形以長為半徑,弧為湖岸,其余部分為灘地,B,D點(diǎn)是公園的進(jìn)出口.公園管理方計劃在進(jìn)出口之間建造一條觀光步行道:線段線段弧,其中Q在線段上(異于線段端點(diǎn)),與弧相切于P點(diǎn)(異于弧端點(diǎn)]根據(jù)市場行情,段的建造費(fèi)用是每千米10萬元,湖岸段弧的建造費(fèi)用是每千米萬元(步行道的寬度不計),設(shè)為弧度觀光步行道的建造費(fèi)用為萬元.
(1)求步行道的建造費(fèi)用關(guān)于的函數(shù)關(guān)系式,并求其走義域;
(2)當(dāng)為何值時,步行道的建造費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)點(diǎn)E為BC的中點(diǎn)時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;
(2)求證:無論點(diǎn)E在BC邊的何處,都有;
(3)當(dāng)為何值時,與平面所成角的大小為45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com