【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,,且當(dāng)時(shí).

1)證明:是奇函數(shù);

2)證明:上是減函數(shù);

3)求在區(qū)間上的最大值和最小值.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3) 最大值是6,最小值是-6.

【解析】

1)令xy0,則可得f0)=0;y=﹣x,即可證明fx)是奇函數(shù),

2)設(shè)x1x2,由已知可得fx1x2)<0,再利用fx+y)=fx+fy),及減函數(shù)的定義即可證明.

3)由(2)的結(jié)論可知f(﹣3)、f3)分別是函數(shù)yfx)在[3、3]上的最大值與最小值,故求出f(﹣3)與f3)就可得所求值域.

1)因?yàn)?/span>的定義域?yàn)?/span>,,

,所以;

,,所以,

從而有,所以,所以是奇函數(shù).

2)任取,,

,

因?yàn)?/span>,所以,所以,所以,

所以,從而上是減函數(shù).

3)由于上是減函數(shù),

在區(qū)間上的最大值是,最小值是,

由于,所以

,

由于為奇函數(shù)知, ,

從而在區(qū)間上的最大值是6,最小值是6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域在上的奇函數(shù),且

1)用定義證明:函數(shù)上是增函數(shù),

2)若實(shí)數(shù)滿(mǎn)足,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形軸上且, ,).

Ⅰ)求點(diǎn)軌跡的方程;

Ⅱ)延長(zhǎng)交軌跡于點(diǎn),軌跡在點(diǎn)處的切線(xiàn)與直線(xiàn)交于點(diǎn),試判斷以為圓心,線(xiàn)段為半徑的圓與直線(xiàn)的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)農(nóng)民種糧收益,促進(jìn)糧食生產(chǎn),確保國(guó)家糧食安全,調(diào)動(dòng)廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開(kāi)始,國(guó)家實(shí)施了對(duì)種糧農(nóng)民直接補(bǔ)貼.通過(guò)對(duì)2014~2018年的數(shù)據(jù)進(jìn)行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補(bǔ)貼額(億元)與該地區(qū)糧食產(chǎn)量(萬(wàn)億噸)之間存在著線(xiàn)性相關(guān)關(guān)系.統(tǒng)計(jì)數(shù)據(jù)如下表:

年份

2014年

2015年

2016年

2017年

2018年

補(bǔ)貼額億元

9

10

12

11

8

糧食產(chǎn)量萬(wàn)億噸

23

25

30

26

21

(1)請(qǐng)根據(jù)如表所給的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸直線(xiàn)方程;

(2)通過(guò)對(duì)該地區(qū)糧食產(chǎn)量的分析研究,計(jì)劃2019年在該地區(qū)發(fā)放糧食補(bǔ)貼額7億元,請(qǐng)根據(jù)(1)中所得的線(xiàn)性回歸直線(xiàn)方程,預(yù)測(cè)2019年該地區(qū)的糧食產(chǎn)量.

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖(1)所示的四邊形中,,,,.將沿折起,使二面角為直二面角(如圖(2)),的中點(diǎn).

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)在點(diǎn)處的切線(xiàn)方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3) 求證:當(dāng)時(shí),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿(mǎn)足,若的最大值為,則實(shí)數(shù)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中中,直線(xiàn),圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求直線(xiàn)和圓的極坐標(biāo)方程;

(2)若直線(xiàn)與圓交于兩點(diǎn),且的面積是,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某工廠生產(chǎn)線(xiàn)上隨機(jī)抽取16件零件,測(cè)量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.據(jù)此可估計(jì)該生產(chǎn)線(xiàn)上大約有25%的零件內(nèi)徑小于等于___________,大約有30%的零件內(nèi)徑大于___________mm(單位:mm.

查看答案和解析>>

同步練習(xí)冊(cè)答案