已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長(zhǎng)與橢圓的短軸長(zhǎng)相等.
(1)求橢圓E的方程;
(2)過(guò)圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩切線的斜率之積為定值.
(1)=1.(2)-1
【解析】設(shè)橢圓的半焦距為c,
圓心O到直線l的距離d==,
∴b==.
由題意得∴a2=3,b2=2.
∴橢圓E的方程為=1.
(2)證明 設(shè)點(diǎn)P(x0,y0),過(guò)點(diǎn)P的橢圓E的切線l0的方程為y-y0=k(x-x0),
聯(lián)立直線l0與橢圓E的方程得
消去y得(3+2k2)x2+4k(y0-kx0)x+2(kx0-y0)2-6=0,
∴Δ=[4k(y0-kx0)]2-4(3+2k2)[2(kx0-y0)2-6]=0,
整理得:(2-)k2+2kx0y0-(-3)=0,
設(shè)滿足題意的橢圓E的兩條切線的斜率分別為k1,k2,則k1·k2=-,
∵點(diǎn)P在圓O上,∴=5,
∴k1·k2=-=-1.
∴兩條切線的斜率之積為常數(shù)-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
將函數(shù)y=cos x+sin x(x∈R) 的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練2練習(xí)卷(解析版) 題型:填空題
已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),如[1.8]=1,[-1.2]=-2.x0是函數(shù)f(x)=ln x-的零點(diǎn),則[x0]=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
同時(shí)滿足兩個(gè)條件:①定義域內(nèi)是減函數(shù);②定義域內(nèi)是奇函數(shù)的函數(shù)是( ).
A.f(x)=-x|x| B.f(x)=x3
C.f(x)=sin x D.f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)7-2隨機(jī)變量及其分布練習(xí)卷(解析版) 題型:選擇題
已知ξ~N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=( ).
A.0.4 B.0.3
C.0.1 D.0.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:選擇題
若點(diǎn)O和點(diǎn)F分別為橢圓的中心和左焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),則的最大值( ).
A.2 B.3 C.6 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線與圓練習(xí)卷(解析版) 題型:填空題
設(shè)直線3x+4y-5=0與圓C1:x2+y2=4交于A,B兩點(diǎn),若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧上,則圓C2的半徑的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-1空間幾何體與點(diǎn)等練習(xí)卷(解析版) 題型:解答題
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:填空題
已知<β<α<π,sin(α+β)=,sin=,則cos=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com