極坐標(biāo)( 1 , 
3
 )
對應(yīng)的點(diǎn)在以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為橫軸的直角坐標(biāo)系的(  )
A.第一象限B.第二象限C.第三象限D.第四象限
由題意可得ρ=1,θ=
3
,
∴x=ρcosθ=-
1
2
,y=ρsinθ=
3
2
,
故它的直角坐標(biāo)為(-
1
2
,
3
2
),
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長度單位.已知圓C的圓心的極坐標(biāo)C(1,
π
2
)
,半徑r=1,直線l的參數(shù)方程為
x=1+
2
2
t
y=2+
2
2
t
(t為參數(shù)).
(1)求圓的極坐標(biāo)方程,并將極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)將直線l的參數(shù)方程化為普通方程,并判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過點(diǎn)M且不過圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2矩陣與變換:
已知矩陣M=
.
2a
21
.
,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P′(-4,0).
①求實(shí)數(shù)a的值;
②求矩陣M的特征值及其對應(yīng)的特征向量.
(2)選修4-4參數(shù)方程與極坐標(biāo):
已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是
x=
2
2
t+m
y=
2
2
t
(t是參數(shù)).若l與C相交于AB兩點(diǎn),且AB=
14

①求圓的普通方程,并求出圓心與半徑;
②求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),Ox軸為極軸建立極坐標(biāo)系,曲線C1的方程為
x=
1
tan?
y=
1
tan2?
.
(φ為參數(shù)),曲線C2的極坐標(biāo)方程為:ρ(cosθ+sinθ)=1,若曲線C1與C2相交于A、B兩點(diǎn). 
(I)求|AB|的值;  
(Ⅱ)求點(diǎn)M(-1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

將下列各點(diǎn)由極坐標(biāo)化為直角坐標(biāo),由直角坐標(biāo)化為極坐標(biāo).

(1);(2);(3)(4)

查看答案和解析>>

同步練習(xí)冊答案