設(shè)函數(shù)的定義域是,其中常數(shù).(注:
(1)若,求的過原點(diǎn)的切線方程.
(2)證明當(dāng)時,對,恒有.
(3)當(dāng)時,求最大實數(shù),使不等式對恒成立.
(1)切線方程為和.(2)詳見解析.(3)的最大值是6.
解析試題分析:(1)一般地,曲線在點(diǎn)處的切線方程為:.注意,此題是求過原點(diǎn)的切線,而不是求在原點(diǎn)處切線方程,而該曲線又過原點(diǎn),故有原點(diǎn)為切點(diǎn)和原點(diǎn)不為切點(diǎn)兩種情況.當(dāng)原點(diǎn)不為切點(diǎn)時需把切點(diǎn)的坐標(biāo)設(shè)出來.(2)不等式可化為,要證明這個不等式,只需利用導(dǎo)數(shù)求出在上的值域即可.
(3)令,則問題轉(zhuǎn)化為對恒成立.注意到,所以如果在單調(diào)增,則必有對恒成立.下面就通過導(dǎo)數(shù)研究的單調(diào)性.
試題解析:(1).若切點(diǎn)為原點(diǎn),由知切線方程為;
若切點(diǎn)不是原點(diǎn),設(shè)切點(diǎn)為,由于,故由切線過原點(diǎn)知,在內(nèi)有唯一的根.
又,故切線方程為.
綜上所述,所求切線有兩條,方程分別為和.
(2)當(dāng)時,令,則,故當(dāng)時恒有,即 在單調(diào)遞減,故對恒成立.
又,故,即,此即
(3)令,則,且,顯然有,且 的導(dǎo)函數(shù)為
若,則,易知對恒成立,從而對恒有,即在單調(diào)增,從而對恒成立,從而在單調(diào)增,對恒成立.
若,則,存在,使得對恒成立,即對恒成立,再由
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-3x2+2x
(1)在處的切線平行于直線,求點(diǎn)的坐標(biāo);
(2)求過原點(diǎn)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其導(dǎo)函數(shù)的圖象經(jīng)過點(diǎn),,如圖所示.
(1)求的極大值點(diǎn);
(2)求的值;
(3)若,求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某工廠生產(chǎn)件產(chǎn)品的成本為(元),
問:(1)要使平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若曲線在點(diǎn)處的切線與直線平行,求的值;
(2)求證函數(shù)在上為單調(diào)增函數(shù);
(3)設(shè),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中常數(shù))
(1)當(dāng)時,求曲線在處的切線方程;
(2)若存在實數(shù)使得不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且是函數(shù)的一個極小值點(diǎn).
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com