【題目】(本小題滿分14分)如圖,在三棱錐P- ABC中,已知平面PBC平面ABC

1)若ABBCCPPB,求證:CPPA

2)若過(guò)點(diǎn)A作直線平面ABC,求證: //平面PBC

【答案】1)詳見(jiàn)解析,(2)詳見(jiàn)解析

【解析】試題分析】1)依據(jù)題設(shè)借助面面垂直的性質(zhì)定理證明平面平面,然后運(yùn)用線面垂直的性質(zhì)定理證明;(2)借助題設(shè)條件先證明平面,進(jìn)而確定,然后再運(yùn)用線面平行的性質(zhì)定理推證:

證明:(1)因?yàn)槠矫?/span> 平面 ,平面 平面, 平面, ,所以平面.因?yàn)?/span>平面,所以 .又因?yàn)?/span> 平面所以平面又因?yàn)?/span>平面所以.

(2)在平面內(nèi)過(guò)點(diǎn)垂足為因?yàn)槠矫?/span>平面,

又平面平面 平面,所以平面平面,所以平面 平面,所以平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績(jī)中,隨機(jī)抽取了名學(xué)生的成績(jī)得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

(2)若用分層抽樣的方法從分?jǐn)?shù)在的學(xué)生中共抽取人,該人中成績(jī)?cè)?/span>的有幾人?

(3)在(2)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為自然對(duì)數(shù)的底數(shù)).

(1)若處的切線過(guò)點(diǎn),求實(shí)數(shù)的值;

(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,均為正三角形,平面平面,.

(Ⅰ)求證:平面;

(Ⅱ)若,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)當(dāng)上的最小值是時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形PBCD中, ,APD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)ESD上,且,如下圖。

1)求證: 平面ABCD;

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).

(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

同步練習(xí)冊(cè)答案