在數(shù)列中,,構(gòu)成公比不等于1的等比數(shù)列.
(1)求證數(shù)列是等差數(shù)列;
(2)求的值;
(3)數(shù)列的前n項和為,若對任意均有成立,求實數(shù)的范圍.

(1)根據(jù)等差數(shù)列的定義,利用相鄰項之間的差為定值來證明。
(2)c=2(3)

解析試題分析:.(1)證明:

(2),
,解得
當(dāng)
(3),

,只需,即
考點:數(shù)列的求和,等比數(shù)列
點評:解決的關(guān)鍵是利用等比數(shù)列和等差數(shù)列的通項公式來求解得到參數(shù)c的值,同時能根據(jù)裂項法來求和,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:
(1) 求數(shù)列的前20項的和; 
(2) 若數(shù)列滿足:,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差不為零的等差數(shù)列的前項和,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且滿足:;數(shù)列滿足 
(1)求;
(2)記數(shù)列,若的前項和為,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的首項為1,其前n項和為,是公比為正整數(shù)的等比數(shù)列,其首項為3,前n項和為. 若.
(1)求的通項公式;(7分)
(2)求數(shù)列的前n項和.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)Sn是等差數(shù)列{an}的前n項和,已知的等比中項為,的等差中項為1,求等差數(shù)列{an}的通項。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共13分)
數(shù)列{}中,,,且滿足
(1)求數(shù)列的通項公式;
(2)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是有窮等差數(shù)列,給出下面數(shù)表:
              ……             第1行
      ……           第2行
  …       …     …
…        …
…                       第n行
上表共有行,其中第1行的個數(shù)為,從第二行起,每行中的每一個數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為
(1)求證:數(shù)列成等比數(shù)列;
(2)若,求和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知數(shù)列為等差數(shù)列,且,
(1) 求數(shù)列的通項公式; (2) 令,求證:數(shù)列是等比數(shù)列.
(3)令,求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案