【題目】分類變量X和Y的列聯(lián)表如下:

y1

y2

總計(jì)

x1

a

b

a+b

x2

c

d

c+d

總計(jì)

a+c

b+d

a+b+c+d

則下列說法中正確的是(
A.ad-bc越小,說明X與Y關(guān)系越弱
B.ad-bc越大,說明X與Y關(guān)系越強(qiáng)
C.(ad-bc)2越大,說明X與Y關(guān)系越強(qiáng)
D.(ad-bc)2越接近于0,說明X與Y關(guān)系越強(qiáng)

【答案】C
【解析】解答:(ad-bc)2越大,說明 值越大,則拒假設(shè)可能性越大,關(guān)系越強(qiáng) 分析:本題主要考查了相關(guān)系數(shù),解決問題的關(guān)鍵是根據(jù)獨(dú)立性檢驗(yàn)的基本思想結(jié)合所給數(shù)據(jù)分析即可
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相關(guān)系數(shù)的相關(guān)知識(shí),掌握|r|≤1,且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時(shí)間相關(guān),教學(xué)開始時(shí),學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示講授概念的時(shí)間(單位:min),可有以下的關(guān)系:f(x)=
(Ⅰ)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時(shí)更強(qiáng)一些?
(Ⅱ)開講后多少min學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?
(Ⅲ)若一個(gè)新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時(shí)間,那么老師能否在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)概念?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中為常數(shù), 為自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的單調(diào)區(qū)間;

2)當(dāng)時(shí),若函數(shù)有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))為奇函數(shù),且相鄰兩對稱軸間的距離為.

(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種大型商品,A,B兩地都有出售,且價(jià)格相同、某地居民從兩地之一購得商品后運(yùn)回的費(fèi)用是:每單位距離A地的運(yùn)費(fèi)是B地的運(yùn)費(fèi)的3倍,已知A,B兩地距離為10千米,顧客選擇A或B地購買這種商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低,求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)如何選擇購貨地點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;

2)若對任意, ,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是(
A.y=5
B.y=log2(3x+2)
C.y=
D.y=( 1x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)設(shè)f(x)= ,求f(1+log23)的值;
(Ⅱ)已知g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和支出的維修費(fèi)用y(萬元),有如下表的統(tǒng)計(jì)資料:

使用年限x

2

3

4

5

6

維修費(fèi)用y

2.2

3.8

5.5

6.5

7.0

若由資料知yx呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程 .
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少.
(3)計(jì)算總偏差平方和、殘差平方和及回歸平方和.
(4)求 并說明模型的擬合效果.

查看答案和解析>>

同步練習(xí)冊答案