【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(2-x),當(dāng)x∈[-2,0]時(shí),f(x)=,則在區(qū)間(-2,6)上關(guān)于x的方程f(x)-log8(x+2)=0的解的個(gè)數(shù)為( )

A. 4B. 3C. 2D. 1

【答案】B

【解析】

把原方程轉(zhuǎn)化為的圖象的交點(diǎn)個(gè)數(shù)問題,由,可知的圖象關(guān)于對(duì)稱,再在同一坐標(biāo)系下,畫出兩函數(shù)的圖象,結(jié)合圖象,即可求解.

由題意,原方程等價(jià)于的圖象的交點(diǎn)個(gè)數(shù)問題,

,可知的圖象關(guān)于對(duì)稱,

作出上的圖象,再根據(jù)是偶函數(shù),圖象關(guān)于軸對(duì)稱,結(jié)合對(duì)稱性,

可得作出上的圖象,如圖所示.

再在同一坐標(biāo)系下,畫出的圖象,同時(shí)注意其圖象過點(diǎn)

由圖可知,兩圖象在區(qū)間內(nèi)有三個(gè)交點(diǎn),從而原方程有三個(gè)根,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.

Ⅱ)當(dāng)時(shí),若曲線上的點(diǎn)都在不等式組所表示的平面區(qū)域內(nèi),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)相鄰兩對(duì)稱軸間的距離為,若將的圖象先向左平移個(gè)單位,再向下平移1個(gè)單位,所得的函數(shù)為奇函數(shù).

1)求的解析式,并求的對(duì)稱中心;

2)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,且sin cos .

(1)cos α的值;

(2)sin(αβ)=- ,β,求cos β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是非零實(shí)常數(shù))滿足,且關(guān)于的方程的解集中恰有一個(gè)元素.

1)求的值;

2)在直角坐標(biāo)系中,求定點(diǎn)到函數(shù)圖像上任意一點(diǎn)的距離的最小值;

3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,的中點(diǎn)

(1)求證:平面;

(2)求證:平面平面;

(3)若與平面所成角為的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體A—BCD中,棱長(zhǎng)為4,MBC的中點(diǎn),

點(diǎn)P在線段AM上運(yùn)動(dòng)(P不與A、M重合),過

點(diǎn)P作直線l平面ABC,l與平面BCD交于點(diǎn)Q,

給出下列命題:

①BC⊥平面AMD ②Q點(diǎn)一定在直線DM

其中正確的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:不等式選講]

已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案