設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿(mǎn)足
z
i
=
5
i-2
,則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A、-1-2iB、-1+2i
C、1+2iD、1-2i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:復(fù)數(shù)方程兩邊同乘復(fù)數(shù)i,然后利用復(fù)數(shù)的除法運(yùn)算法則求解即可.
解答: 解:復(fù)數(shù)z滿(mǎn)足
z
i
=
5
i-2

∴z=
5i
i-2
=
5i(-2-i)
(i-2)(-2-i)
=i(-2-i)=1-2i.
故數(shù)z的共軛復(fù)數(shù)1+2i,
故選:C.
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,乘除運(yùn)算,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,CA=3,CB=4,若點(diǎn)M滿(mǎn)足
AM
MB
,且
CM
CA
=18,則cos∠MCA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是(  )
A、在統(tǒng)計(jì)學(xué)中,獨(dú)立性檢驗(yàn)是檢驗(yàn)兩個(gè)分類(lèi)變量是否有關(guān)系的一種統(tǒng)計(jì)方法.
B、線(xiàn)性回歸方程對(duì)應(yīng)的直線(xiàn)
y
=
b
x+
a
至少經(jīng)過(guò)其樣本數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3)…(xn,yn)中的一個(gè)點(diǎn).
C、在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高.
D、在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)空間幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為( 。
A、
1
6
B、3+
2
C、3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z=-i,則
1
1-z
的虛部為( 。
A、
1
2
B、
1
2
i
C、-
1
2
D、-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=kx-3在其定義域上為增函數(shù),則此函數(shù)的圖象所經(jīng)過(guò)的象限為( 。
A、一、二、三象限
B、一、二、四象限
C、一、三、四象限
D、二、三、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿(mǎn)足約束條件
1≤x+y≤3
1≤y-x≤3
,則2x-y的最小值為( 。
A、-6B、-4C、-3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿(mǎn)足
2x+3y≥11
x≤4
y≤3
,則z=
y-1
x+2
的取值范圍為( 。
A、[0,
2
3
]
B、[0,1]
C、(-∞,
2
3
]
D、[
2
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線(xiàn)C:ρ=2cosθ.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=
2
2
t
y=
2
2
t
(t為參數(shù)),直線(xiàn)l與曲線(xiàn)C分別交于點(diǎn)M,N.寫(xiě)出曲線(xiàn)C的直角坐標(biāo)方程并求出線(xiàn)段MN的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案