【題目】2020年春節(jié)期間,全國(guó)人民都在抗擊“新型冠狀病毒肺炎”的斗爭(zhēng)中.當(dāng)時(shí)武漢多家醫(yī)院的醫(yī)用防護(hù)物資庫(kù)存不足,某醫(yī)院甚至面臨斷貨危機(jī),南昌某生產(chǎn)商現(xiàn)有一批庫(kù)存的醫(yī)用防護(hù)物資,得知消息后,立即決定無(wú)償捐贈(zèng)這批醫(yī)用防護(hù)物資,需要用A、B兩輛汽車把物資從南昌緊急運(yùn)至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì)2000輛汽車,通過(guò)這兩條路線從南昌到武漢所用時(shí)間的頻數(shù)分布表如下:
所用的時(shí)間(單位:小時(shí)) | ||||
路線1的頻數(shù) | 200 | 400 | 200 | 200 |
路線2的頻數(shù) | 100 | 400 | 400 | 100 |
假設(shè)汽車A只能在約定交貨時(shí)間的前5小時(shí)出發(fā),汽車B只能在約定交貨時(shí)間的前6小時(shí)出發(fā)(將頻率視為概率).為最大可能在約定時(shí)間送達(dá)這批物資,來(lái)確定這兩車的路線.
(1)汽車A和汽車B應(yīng)如何選擇各自的路線.
(2)若路線1、路線2的“一次性費(fèi)用”分別為3.2萬(wàn)元、1.6萬(wàn)元,且每車醫(yī)用物資生產(chǎn)成本為40萬(wàn)元(其他費(fèi)用忽略不計(jì)),以上費(fèi)用均由生產(chǎn)商承擔(dān),作為援助金額的一部分.根據(jù)這兩輛車到達(dá)時(shí)間分別計(jì)分,具體規(guī)則如下(已知兩輛車到達(dá)時(shí)間相互獨(dú)立,互不影響):
到達(dá)時(shí)間與約定時(shí)間的差x(單位:小時(shí)) | |||
該車得分 | 0 | 1 | 2 |
生產(chǎn)商準(zhǔn)備根據(jù)運(yùn)輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬(wàn)元,兩車得分和每增加1分,捐款增加20萬(wàn)元,若汽車A、B用(1)中所選的路線運(yùn)輸物資,記該生產(chǎn)商在此次援助活動(dòng)中援助總額為Y(萬(wàn)元),求隨機(jī)變量Y的期望值,(援助總額一次性費(fèi)用生產(chǎn)成本現(xiàn)金捐款總額)
【答案】(1)汽車A選擇路線1,汽車B選擇路線2;(2)138.8.
【解析】
(1)由題目中的頻數(shù)分布表列出頻率分布表,求出汽車在約定交貨時(shí)間前5(6)小時(shí)出發(fā)選擇路線1、2將物資運(yùn)往武漢且在約定交貨時(shí)間前到達(dá)的概率,選擇概率較大的路線;
(2)設(shè)表示汽車A選擇路線1時(shí)的得分,表示汽車B選擇路線2時(shí)的得分,分別求出,的分布列,再求出的分布列,求出,即可求出.
(1)頻率分布表如下:
所用的時(shí)間(單位:小時(shí)) | ||||
路線1的頻率 | 0.2 | 0.4 | 0.2 | 0.2 |
路線2的頻率 | 0.1 | 0.4 | 0.4 | 0.1 |
設(shè),分別表示汽車在約定交貨時(shí)間前5小時(shí)出發(fā)選擇路線1、2將物資運(yùn)往武漢且在約定交貨時(shí)間前到達(dá);、分別表示汽車在約定交貨前6小時(shí)出發(fā)選擇路線1、2將物資運(yùn)往武漢且在約定交貨時(shí)間前到達(dá);
,,
,,
所以汽車A選擇路線1,汽車B選擇路線2.
(2)設(shè)表示汽車A選擇路線1時(shí)的得分,表示汽車B選擇路線2時(shí)的得分,
,的分布列分別是:
0 | 1 | 2 | ||||
P | 0.6 | 0.2 | 0.2 | |||
0 | 1 | |||||
P | 0.9 | 0.1 | ||||
設(shè)則X的分布列如下:
0 | 1 | 2 | 3 | |
0.54 | 0.24 | 0.2 | 0.02 |
,
所以(萬(wàn)元)
所以援助總額的期望值為138.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)①求證:當(dāng)任意取值時(shí),的圖像始終經(jīng)過(guò)一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo);
②若的圖像在該定點(diǎn)處取得極值,求的值;
(2)求證:當(dāng)時(shí),函數(shù)有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.若函數(shù)的圖象在點(diǎn)處的切線與的圖象也相切.
(1)求的方程和的值;
(2)設(shè)不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,四邊形,均為正方形,且,M為的中點(diǎn),N為的中點(diǎn).
(1)求證:平面ABC;
(2)求二面角的正弦值;
(3)設(shè)P是棱上一點(diǎn),若直線PM與平面所成角的正弦值為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研單位到某大學(xué)的光電信息科學(xué)工程專業(yè)招聘暑期實(shí)習(xí)生,該專業(yè)一班30名同學(xué)全部報(bào)名,該科研單位對(duì)每個(gè)學(xué)生的測(cè)試是光電實(shí)驗(yàn),這30名學(xué)生測(cè)試成績(jī)的莖葉圖如圖所示.
(1)求男同學(xué)測(cè)試成績(jī)的平均數(shù)及中位數(shù);
(2)從80分以上的女同學(xué)中任意選取3人,求恰有2人成績(jī)位于的概率;
(3)若80分及其以上定為優(yōu)秀,80分以下定為合格,作出該班男女同學(xué)成績(jī)“優(yōu)秀”、“合格”的列聯(lián)表,并判斷是否有90%的把握認(rèn)為該次測(cè)試是否優(yōu)秀與性別有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.01 | |
2.072 | 2.706 | 3.841 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,(其中)是上的一點(diǎn),且.
(1)求拋物線的方程;
(2)已知為拋物線上除頂點(diǎn)之外的任意一點(diǎn),在點(diǎn)處的切線與軸交于點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),設(shè),,的斜率分別為,,,求證:,,成等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com