精英家教網 > 高中數學 > 題目詳情

【題目】某科研單位到某大學的光電信息科學工程專業(yè)招聘暑期實習生,該專業(yè)一班30名同學全部報名,該科研單位對每個學生的測試是光電實驗,這30名學生測試成績的莖葉圖如圖所示.

1)求男同學測試成績的平均數及中位數;

2)從80分以上的女同學中任意選取3人,求恰有2人成績位于的概率;

3)若80分及其以上定為優(yōu)秀,80分以下定為合格,作出該班男女同學成績“優(yōu)秀”、“合格”的列聯表,并判斷是否有90%的把握認為該次測試是否優(yōu)秀與性別有關?

附:

0.15

0.10

0.05

0.01

2.072

2.706

3.841

6.635

.

【答案】184,85;(2;(3)列聯表見解析,有把握.

【解析】

1)根據莖葉圖,結合平均數和中位數的定義進行求解即可;

2)設成績位于的三個女同學為,,90以上的兩個女同學為.先列舉出從中任取3人的情形的個數,然后從中選出符合條件的情形的個數,最后利用古典概型的計算公式進行求解即可;

3)根據公式,計算出的值進行求解即可.

1

,

中位數是85.

2)設成績位于的三個女同學為,,90以上的兩個女同學為,.從中任取3人的情形有:,共10種情形,滿足條件的6種,故概率為.

3列聯表為

合計

優(yōu)秀

10

5

15

合格

5

10

15

合計

15

15

30

,

∴有90%的把握認為該次測試成績是否優(yōu)秀與性別有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知是拋物線的焦點,點軸上,為坐標原點,且滿足,經過點且垂直于軸的直線與拋物線交于、兩點,且.

1)求拋物線的方程;

2)直線與拋物線交于兩點,若,求點到直線的最大距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年春節(jié)期間,全國人民都在抗擊新型冠狀病毒肺炎的斗爭中.當時武漢多家醫(yī)院的醫(yī)用防護物資庫存不足,某醫(yī)院甚至面臨斷貨危機,南昌某生產商現有一批庫存的醫(yī)用防護物資,得知消息后,立即決定無償捐贈這批醫(yī)用防護物資,需要用A、B兩輛汽車把物資從南昌緊急運至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時間互不影響.據調查統(tǒng)計2000輛汽車,通過這兩條路線從南昌到武漢所用時間的頻數分布表如下:

所用的時間(單位:小時)

路線1的頻數

200

400

200

200

路線2的頻數

100

400

400

100

假設汽車A只能在約定交貨時間的前5小時出發(fā),汽車B只能在約定交貨時間的前6小時出發(fā)(將頻率視為概率).為最大可能在約定時間送達這批物資,來確定這兩車的路線.

1)汽車A和汽車B應如何選擇各自的路線.

2)若路線1、路線2一次性費用分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產成本為40萬元(其他費用忽略不計),以上費用均由生產商承擔,作為援助金額的一部分.根據這兩輛車到達時間分別計分,具體規(guī)則如下(已知兩輛車到達時間相互獨立,互不影響):

到達時間與約定時間的差x(單位:小時)

該車得分

0

1

2

生產商準備根據運輸車得分情況給出現金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車A、B用(1)中所選的路線運輸物資,記該生產商在此次援助活動中援助總額為Y(萬元),求隨機變量Y的期望值,(援助總額一次性費用生產成本現金捐款總額)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓,圓心,點E在直線上,點P滿足,點P的軌跡為曲線M

1)求曲線M的方程.

2)過點N的直線l分別交M于點A、B,交圓N于點C、D(自上而下),若、成等差數列,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線焦點為,直線與拋物線交于兩點.到準線的距離之和最小為8.

1)求拋物線方程;

2)若拋物線上一點縱坐標為,直線分別交準線于.求證:以為直徑的圓過焦點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新高考方案規(guī)定,普通高中學業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據學生考試時的原始卷面分數,由高到低進行排序,評定為A,BC,DE五個等級.某試點高中2019年參加“選擇考”總人數是2017年參加“選擇考”總人數的2倍,為了更好地分析該校學生“選擇考”的水平情況,統(tǒng)計了該校2017年和2019年“選擇考”成績等級結果,得到如圖表:

針對該!斑x擇考”情況,2019年與2017年比較,下列說法正確的是( )

A.獲得A等級的人數不變B.獲得B等級的人數增加了1

C.獲得C等級的人數減少了D.獲得E等級的人數不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

)證明: BC1//平面A1CD;

)設AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019121日起鄭州市施行《鄭州市城市生活垃圾分類管理辦法》,鄭州將正式進入城市生活垃圾分類時代.為了增強社區(qū)居民對垃圾分類知識的了解,積極參與到垃圾分類的行動中,某社區(qū)采用線下和線上相結合的方式開展了一次200名轄區(qū)成員參加的垃圾分類有關知識專題培訓.為了了解參訓成員對于線上培訓、線下培訓的滿意程度,社區(qū)居委會隨機選取了40名轄區(qū)成員,將他們分成兩組,每組20人,分別對線上、線下兩種培訓進行滿意度測評,根據轄區(qū)成員的評分(滿分100分)繪制了如圖所示的莖葉圖.

1)根據莖葉圖判斷轄區(qū)成員對于線上、線下哪種培訓的滿意度更高,并說明理由.

2)求這40名轄區(qū)成員滿意度評分的中位數,并將評分不超過、超過分別視為基本滿意”“非常滿意兩個等級.

)利用樣本估計總體的思想,估算本次培訓共有多少轄區(qū)成員對線上培訓非常滿意;

)根據莖葉圖填寫下面的列聯表.

基本滿意

非常滿意

總計

線上培訓

線下培訓

總計

并根據列聯表判斷能否有995%的把握認為轄區(qū)成員對兩種培訓方式的滿意度有差異?

附:

0010

0005

0001

6635

7879

10828

,其中

查看答案和解析>>

同步練習冊答案