【題目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.

【答案】
(1)解: , ,

∴cosx≥0,


(2)解:f(x)=cos2x﹣4λcosx=2(cosx﹣λ)2﹣1﹣2λ2,

,

∴0≤cosx≤1,

①當(dāng)λ<0時,當(dāng)且僅當(dāng)cosx=0時,f(x)取得最小值﹣1,這與已知矛盾;

②當(dāng)0≤λ≤1,當(dāng)且僅當(dāng)cosx=λ時,f(x)取得最小值﹣1﹣2λ2,

由已知得 ,解得

③當(dāng)λ>1時,當(dāng)且僅當(dāng)cosx=1時,f(x)取得最小值1﹣4λ,

由已知得 ,解得 ,這與λ>1相矛盾、

綜上所述, 為所求


【解析】(1)根據(jù)所給的向量的坐標(biāo),寫出兩個向量的數(shù)量積,寫出數(shù)量積的表示式,利用三角函數(shù)變換,把數(shù)量積整理成最簡形式,再求兩個向量和的模長,根據(jù)角的范圍,寫出兩個向量的模長.(2)根據(jù)第一問做出的結(jié)果,寫出函數(shù)的表達式,式子中帶有字母系數(shù)λ,把式子整理成關(guān)于cosx的二次函數(shù)形式,結(jié)合λ的取值范圍,寫出函數(shù)式的最小值,是它的最小值等于已知量,得到λ的值,把不合題意的舍去.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知命題p:方程 表示焦點在y軸的橢圓;命題q:關(guān)于x的不等式x2﹣2x+m>0的解集是R; 若“p∧q”是假命題,“p∨q”是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,

(Ⅰ)求圖中的值;

(Ⅱ)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

(Ⅲ)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如表所示,求數(shù)學(xué)成績在之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為:x2+y2﹣2mx﹣2y+4m﹣4=0,(m∈R).
(1)試求m的值,使圓C的面積最。
(2)求與滿足(1)中條件的圓C相切,且過點(1,﹣2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三內(nèi)角A、B、C所對邊的長分別為a、b、c,設(shè)向量 , ,若
(1)求角B的大。
(2)若△ABC的面積為 ,求AC邊的最小值,并指明此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學(xué)的比賽情況,現(xiàn)在甲、乙兩個班級各隨機抽取了10名同學(xué)的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學(xué)生的成績(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:

(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;

(2)現(xiàn)從兩組數(shù)據(jù)中獲獎的學(xué)生里分別隨機抽取一人接受采訪,求被抽中的甲班學(xué)生成績高于乙班學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點.

(1)求圓的直角坐標(biāo)方程及弦的長;

(2)動點在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(2x+1)的定義域為(
A.(﹣5,+∞)
B.[﹣5,+∞)
C.(﹣5,0)
D.(﹣2,0)

查看答案和解析>>

同步練習(xí)冊答案