【題目】已知數(shù)列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,則a1+a2+a3+…+a100=

【答案】1306
【解析】解:∵a2n=n﹣an , a2n+1=an+1, ∴an=n﹣a2n , an=a2n+1﹣1,∴a2n+1+a2n=n+1,
∴a1+(a2+a3)+(a4+a5)+…+(a98+a99)=1+2+3+…+50=1275,
a100=50﹣a50=50﹣(25﹣a25
=25+a12+1
=26+(6﹣a6)=32﹣(3﹣a3
=29+(a1+1)
=31,
∴a1+a2+a3+…+a100=1275+31=1306.
所以答案是:1306.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和的相關知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個月中哪個月的月平均利潤最高?

2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知直線l:x﹣y﹣2=0,拋物線C:y2=2px(p>0),若拋物線C上存在關于直線l對稱的相異兩點P和Q.

(1)求證:線段PQ的中點坐標為(2﹣p,﹣p);
(2)求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105115)

[115,125)

頻數(shù)

6

26

38

22

8

(1)作出這些數(shù)據(jù)的頻率分布直方圖

(2)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:4x﹣3y+11=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(
A.
B.2
C.
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關于x的方程f(x)=k有3個實根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4sin(θ﹣ ).
(1)求圓C的直角坐標方程;
(2)若P(x,y)是直線l與圓面ρ≤4sin(θ﹣ )的公共點,求 x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),( )是偶函數(shù).

(1)求的值;

(2)設函數(shù),其中.若函數(shù)的圖象有且只有一個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax2﹣bx(a,b∈R),g(x)= ﹣lnx.
(1)當a=﹣1時,f(x)與g(x)在定義域上的單調(diào)性相反,求b的取值范圍;
(2)當a,b都為0時,斜率為k的直線與曲線y=f(x)交A(x1 , y1),B(x2 , y2)(x1<x2)于兩點,求證:x1

查看答案和解析>>

同步練習冊答案