【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?
【答案】(1)見解析;(2)平均數(shù)的估計值為100,方差的估計值為104;(3)不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.
【解析】試題分析:(1)根據(jù)頻數(shù)算出頻率,得縱坐標(biāo),即可可做直方圖;(2)每組數(shù)據(jù)中間值乘以該組的頻率求和即可得這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù),再根據(jù)方差公式求其方差;(3)不低于的各組頻率求和與進行比較即可。
試題解析:(1)
。
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為
質(zhì)量指標(biāo)值的樣本方差為:。
所以這種產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)的估計值為100,方差的估計值為104。
(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計值為。由于該估計值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(﹣∞,0)上單調(diào)遞增的是( )
A.f(x)=
B.f(x)=x2+1
C.f(x)=x
D.f(x)=2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c的圖象頂點坐標(biāo)為(﹣1,﹣4)且f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= ,畫出函數(shù)g(x)圖象并求單調(diào)區(qū)間;
(3)求函數(shù)g(x)在[﹣3,2]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:
2 | 5 | 8 | 9 | 11 | |
12 | 10 | 8 | 8 | 7 |
(1)求出與的回歸方程;
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額.
附: 回歸方程中, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點的橫坐標(biāo)為,過的直線交于一點,交軸于點,過點作的垂線交于另一點,若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)(a為常數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com