已知函數(shù)f(x)對任意的x,y∈R,總有f(x)>0,f(x+y)=f(x)•f(y),且當x<0時,f(x)>1,f(-1)=2.
(1)求證f(x)在R上為減函數(shù);
(2)求f(x)在[-3,3]上的最值.
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:(1)根據(jù)抽象函數(shù)的關(guān)系,結(jié)合函數(shù)單調(diào)性的定義即可證明f(x)在R上為減函數(shù);
(2)利用函數(shù)的單調(diào)性即可求f(x)在[-3,3]上的最值.
解答: 解:(1)x1,x2∈R,且x1<x2,則x1-x2<0,
∴f(x1-x2)=
f(x1)
f(x2)
>1
,
∵對任意的x,y∈R,總有f(x)>0,
∴f(x1)>f(x2),
即f(x)在R上為減函數(shù).
(1)∵f(x)在R上為減函數(shù).
∴f(x)在[-3,3]上也是減函數(shù),
∴3≤f(x)≤f(-3),
∵f(-1)=2,∴f(-2)=f(-1)f(-1)=4,
f(-3)=f(-1)f(-2)=2×4=8,
當x>0時,f(x+0)=f(x)•f(0),
∴f(0)=1,則f(1-1)=f(1)•f(-1)=1,
則f(1)=
1
2
,f(2)=f(1)f(1)=
1
4

f(3)=f(1)f(2)=
1
2
×
1
4
=
1
8
,
即f(x)在[-3,3]上的最大值為8,最小值為=
1
8
點評:本題主要考查函數(shù)單調(diào)性的判斷以及函數(shù)最值的求解,根據(jù)抽象函數(shù)的關(guān)系,利用賦值法是解決抽象函數(shù)的基本方法,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π
6
).
(1)求函數(shù)f(x)的最小正周期和最值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非零向量
a
b
滿足|
a
|=|
b
|=|
a
+
b
|,則
b
a
-
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,某池塘中浮萍蔓延的面積y(m2)與時間t(月)的關(guān)系y=at,有以下幾種說法:
①這個指數(shù)函數(shù)的底數(shù)為2;
②第5個月時,浮萍面積就會超過30m2;
③浮萍從4m2蔓延到12m2需要經(jīng)過1.5個月;
④浮萍每月增加的面積都相等.
其中正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={x|-1≤x<2},N={x|x≤a},若M∩N≠∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非負實數(shù)x,y滿足2x+3y-8≤0且3x+2y-7≤0,則x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個命題,其中命題正確的有
 

①函數(shù)是其定義域到值域的映射;     
②f(x)=
x-3
+
2-x
是函數(shù);
③函數(shù)y=2x(x∈N)的圖象是一條直線;
④函數(shù)y=f(x)的圖象與直線x=1圖象最多只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},S10=310,S20=1220,則S30=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x=0”是“xy=0”的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習冊答案