下列關于等比數(shù)列的說法中,正確的是
 
.(填所有正確說法的序號)
①等比數(shù)列中不可能含有等于0的項;
②一個等比數(shù)列中的各項,要么都是正數(shù),要么都是負數(shù);
③若{an}是等比數(shù)列,則{|an|}也是等比數(shù)列;
④兩個等比數(shù)列的對應項的和構成的數(shù)列還是等比數(shù)列.
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:①由等比數(shù)列的定義可知正確;②舉反例,an=(-1)n為等比數(shù)列;③由等比數(shù)列的定義可證明;④舉反例,an=(-1)n為等比數(shù)列,bn=1也為等比數(shù)列,進而可得答案.
解答: 解:①由等比數(shù)列的定義可知:等比數(shù)列中不可能含有等于0的項,故正確;
②舉反例,an=(-1)n為等比數(shù)列,但其中的項有正有負,故錯誤;
③若{an}是等比數(shù)列,則
an+1
an
=q,q為與n無關的常數(shù),
故有
|an+1|
|an|
=|
an+1
an
|
=|q|,|q|也為與n無關的常數(shù),
∴{|an|}也是等比數(shù)列,故正確;
④舉反例,an=(-1)n為等比數(shù)列,bn=1也為等比數(shù)列,
當an+bn=0,顯然不是等比數(shù)列,故錯誤.
故答案為:①③
點評:本題考查等比數(shù)列的性質(zhì),反例法是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線L過點M(-2,1),與x,y軸分別交于A,B兩點.
(1)若
AM
=
MB
,求直線L的方程;
(2)若
AM
=2
MB
,求直線L的方程;
(3)若|
AM
|=2|
MB
|,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-3ax+2a2<0(a>0)成立的充分條件是|x-1|<b,(b>0),求2a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等邊△ABC的邊長為2,取各邊的三等分點并連線,可以將△ABC分成如圖所示的9個全等的小正三角形,記這9個小正三角形的重心分別為G1,G2,G3,…,G9,則|(
AG1
+
BG1
)+(
AG2
+
BG2
)+…(
AG9
+
BG9
)|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3-sinx的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,Ω是一個平面點集,如果存在非零平面向量
a
,對于任意P∈Ω,均有Q∈Ω,使得
OQ
=
OP
+
a
,則稱
a
為平面點集Ω的一個向量周期.現(xiàn)有以下四個命題:
①若平面點集Ω存在向量周期
a
,則k
a
(k∈Z,k≠0)也是Ω的向量周期;
②若平面點集Ω形成的平面圖形的面積是一個非零常數(shù),則Ω不存在向量周期;
③若平面點集Ω={(x,y)|x>0,y>0},則
b
=(1,2)為Ω的一個向量周期;
④若平面點集Ω={(x,y)|[y]-[x]=0}([m]表示不大于m的最大整數(shù)),則
c
=(1,1)為Ω的一個向量周期.
其中真命題是
 
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪函數(shù)y=kxa的圖象經(jīng)過點(4,2),那么f(
1
2
)×f(8)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)字0,1,2,3,4,5,組成無重復數(shù)字的五位數(shù),當數(shù)字1,3,5同時出現(xiàn)時,1,3,5,互不相鄰,則這樣的五位數(shù)的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:x2+3x+
x2+3x
=6

查看答案和解析>>

同步練習冊答案