若方程x2+y2+4mx-2y+5m=0表示的曲線為圓,則m的取值范圍是( 。
A、
1
4
<m<1
B、m<
1
4
或m>1
C、m<
1
4
D、m>1
考點(diǎn):軌跡方程
專題:計(jì)算題,直線與圓
分析:根據(jù)二元二次方程表示圓的條件,可以求得若方程x2+y2+4mx-2y+5m=0表示圓,必有16m2+4-20m>0,即可求出m的取值范圍.
解答: 解:根據(jù)二元二次方程表示圓的條件,
方程x2+y2+4mx-2y+5m=0表示圓,必有16m2+4-20m>0,
解可得,m<
1
4
或m>1,
故選:B.
點(diǎn)評(píng):本題考查二元二次方程表示圓的條件,若方程x2+y2+Dx+Ey+F=0表示圓,則有D2+E2-4F>0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足遞推公式an=3an-1+3n-1(n≥2),又a1=5,則使得{
an
3n
}為等差數(shù)列的實(shí)數(shù)λ=(  )
A、2
B、5
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列拋物線中,對(duì)稱軸是x=3的是( 。
A、y=-3x2
B、y=x2+6x
C、y=2x2+12x-1
D、y=2x2-12x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且x>0時(shí),f(x)=x+7.
(1)求f(1),f(-1);
(2)求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)f(x)=Asin(ωx+φ)的部分圖象,其圖象過點(diǎn)(0,2)和(
12
,0).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)m=
 
時(shí),函數(shù)y=(m-1)xm2+1是二次函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)家旅社有客房300間,每間日房租為20元,每天都客滿,旅社欲提高檔次,并提高租金,如果每間客戶日房租增加2元,客房出租數(shù)就會(huì)減少10間,若不考慮其他因素,旅社將房間租金提高多少時(shí),每天客房的租金總收入最高?最高租金為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:滿足斜率為2,與y軸交于P(0,m),m為何值時(shí),直線l與圓x2+y2=5.
(1)無公共點(diǎn);
(2)截得的弦長(zhǎng)為2;
(3)交點(diǎn)處兩條半徑互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列六個(gè)關(guān)系式中,其中錯(cuò)誤的是( 。
①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅?{0};⑥0∈{0}.
A、①③B、②④⑤
C、①②⑤⑥D、③④

查看答案和解析>>

同步練習(xí)冊(cè)答案