【題目】如圖,在四棱錐中,是等邊三角形,,,.
(1)若,求證:平面;
(2)若,求二面角的正弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)作,交于,連接,分別證明平面,平面,進(jìn)而可證明平面平面,可得平面;
(2)計(jì)算可知,所以,結(jié)合,可知平面,從而可知平面平面,在平面內(nèi)作平面,以B點(diǎn)為坐標(biāo)原點(diǎn),分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,再結(jié)合,可求出.
(1)如圖,作,交于,連接.
因?yàn)?/span>,所以是的三等分點(diǎn),可得.
因?yàn)?/span>,,,所以,
因?yàn)?/span>,所以,
因?yàn)?/span>,所以,所以,
因?yàn)?/span>,所以,所以,
因?yàn)?/span>平面,平面,所以平面.
又,平面,平面,所以平面.
因?yàn)?/span>,、平面,所以平面平面,所以平面.
(2)因?yàn)?/span>是等邊三角形,,所以.
又因?yàn)?/span>,,所以,所以.
又,平面,,所以平面.
因?yàn)?/span>平面,所以平面平面.
在平面內(nèi)作平面,以B點(diǎn)為坐標(biāo)原點(diǎn),分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,
則,,,
所以,,,.
設(shè)為平面的法向量,則,即,
令,可得.
設(shè)為平面的法向量,則,即,
令,可得.
所以,則,
所以二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面及直線,,則下列說(shuō)法錯(cuò)誤的個(gè)數(shù)是( ).
①若直線,與平面所成角都是,則這兩條直線平行;②若直線,與平面所成角都是,則這兩條直線不可能垂直;③若直線,垂直,則這兩條直線與平面不可能都垂直;④若直線,平行,則這兩條直線中至少有一條與平面平行.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)求f(x)的單調(diào)區(qū)間:
(2)若ax2+x+a﹣exx+exlnx≤0成立,求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,
(1)若,且在其定義域上存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù), ,若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過(guò)線段的中點(diǎn)作軸的垂線分別交, 于點(diǎn)、,證明: 在點(diǎn)處的切線與在點(diǎn)處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)在上存在兩個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.對(duì)具有線性相關(guān)關(guān)系的變量有一組觀測(cè)數(shù)據(jù),其線性回歸方程是,且,則實(shí)數(shù)的值是
B.正態(tài)分布在區(qū)間和上取值的概率相等
C.若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1
D.若一組數(shù)據(jù)的平均數(shù)是2,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】港珠澳大橋是一座具有劃時(shí)代意義的大橋.它連通了珠海香港澳門三地,大大縮短了三地的時(shí)空距離,盤活了珠江三角洲的經(jīng)濟(jì),被譽(yù)為新的世界七大奇跡.截至2019年10月23日8點(diǎn),珠海公路口岸共驗(yàn)放出入境旅客超過(guò)1400萬(wàn)人次,日均客流量已經(jīng)達(dá)到4萬(wàn)人次,驗(yàn)放出入境車輛超過(guò)70萬(wàn)輛次,2019年春節(jié)期間,客流再次大幅增長(zhǎng),日均客流達(dá)8萬(wàn)人次,單日客流量更是創(chuàng)下11.3萬(wàn)人次的最高紀(jì)錄.
2019年從五月一日開(kāi)始的連續(xù)100天客流量頻率分布直方圖如下
(1)①同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替,根據(jù)頻率分布直方圖.估計(jì)客流量的平均數(shù).
②求客流量的中位數(shù).
(2)設(shè)這100天中客流量超過(guò)5萬(wàn)人次的有天,從這天中任取兩天,設(shè)為這兩天中客流量超過(guò)7萬(wàn)人的天數(shù).求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,在高三年級(jí)中隨機(jī)選取名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于小時(shí)的有人,在這人中分?jǐn)?shù)不足分的有人;在每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不足于小時(shí)的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足分的占.
(1)請(qǐng)完成列聯(lián)表;并判斷是否有的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
分?jǐn)?shù)不少于分 | 分?jǐn)?shù)不足分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于小時(shí) | |||
線上學(xué)習(xí)時(shí)間不足小時(shí) | |||
合計(jì) |
(2)在上述樣本中從分?jǐn)?shù)不足于分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于小時(shí)和線上學(xué)習(xí)時(shí)間不足小時(shí)的學(xué)生共名,若在這名學(xué)生中隨機(jī)抽取人,求這人每周線上學(xué)習(xí)時(shí)間都不足小時(shí)的概率.(臨界值表僅供參考)
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面平面,為矩形,為等腰梯形,,分別為,中點(diǎn),,,.
(1)證明:平面;
(2)求二面角的正弦值;
(3)線段上是否存在點(diǎn),使得平面,若存在求出的長(zhǎng),若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com