【題目】已知函數(shù), .

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

【答案】(1){x|-3x1}(2)[13]

【解析】試題分析

1)由題意得不等式即為|x1|-|x1|x23x2,根據(jù)分類討論的方法將不等式轉(zhuǎn)化為三個(gè)不等式組求解.(2F(x)g(x)f(x)x2(a2)x2,將不等式的解集包含轉(zhuǎn)化為求解即可得結(jié)論.

試題解析

(1)不等式|x1|-|x1|x23x2等價(jià)于

解得 ,或-1x1,或-3x1

所以不等式f(x)≥g(x)的解集是{x|-3x1}

(2)x∈[1,1],令F(x)g(x)f(x)x2(a2)x2

不等式f(x)≥g(x)的解集包含[1,1]等價(jià)于

解得1≤a≤3,

所以a的取值范圍為[1,3].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PAPB,OAB的中點(diǎn),ODPC.

(Ⅰ) 求證:OCPD;

(II)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長為.

(1)求該橢圓的方程;

(2)若過點(diǎn)的直線與橢圓相交于, 兩點(diǎn),且點(diǎn)恰為弦的中點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角的對邊分別為,已知.

(1)求

(2)若, 成等差數(shù)列,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某果農(nóng)選取一片山地種植紅柚,收獲時(shí),該果農(nóng)隨機(jī)選取果樹20株作為樣本測量它們每一株的果實(shí)產(chǎn)量(單位:),獲得的所有數(shù)據(jù)按照區(qū)間,,進(jìn)行分組,得到頻率分布直方圖如圖。已知樣本中產(chǎn)量在區(qū)間上的果樹株數(shù)是產(chǎn)量在區(qū)間上的果樹株數(shù)的倍。

(1)求的值;

(2)求樣本的平均數(shù)和中位數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點(diǎn),求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn),過點(diǎn)作兩條互相垂直的直線,直線于不同的兩點(diǎn),直線于不同的兩點(diǎn),記直線的斜率為.

(1)求的取值范圍;

(2)設(shè)線段的中點(diǎn)分別為點(diǎn),證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式對任意實(shí)數(shù)都成立,則實(shí)數(shù)的取值范圍_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)P是函數(shù)圖象上任意一點(diǎn),點(diǎn)Q坐標(biāo)為,當(dāng)取得最小值時(shí)圓與圓相外切,則的最大值為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案