【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學(xué)生進(jìn)行“是否有明顯拖延癥”的調(diào)查中,隨機(jī)發(fā)放了110份問卷.對收回的100份有效問卷進(jìn)行統(tǒng)計,得到如下列聯(lián)表:
有明顯拖延癥 | 無明顯拖延癥 | 合計 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合計 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明顯拖延癥進(jìn)行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機(jī)抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若在犯錯誤的概率不超過的前提下認(rèn)為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.
附:獨(dú)立性檢驗統(tǒng)計量,其中.
獨(dú)立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(Ⅰ)
的分布列為:
0 | 1 | 2 | |
;
(Ⅱ).
【解析】試題分析:(Ⅰ)分層從 “無有明顯拖延癥”里抽人.無明顯拖延癥的問卷的份數(shù)為,隨機(jī)變量X=0,1,2.利用“超幾何分布”即可得出分布列及其數(shù)學(xué)期望;
(Ⅱ)根據(jù)“獨(dú)立性檢驗的基本思想的應(yīng)用”計算公式可得的觀測值,即可得出.
試題解析:(Ⅰ)女生中從“有明顯拖延癥”里抽人,“無有明顯拖延癥”里抽人.
則隨機(jī)變量,
∴, , .
的分布列為:
0 | 1 | 2 | |
.
(Ⅱ)由題設(shè)條件得,
由臨界值表可知: ,∴.
點(diǎn)晴:本題考查的是超幾何分布和獨(dú)立性檢驗問題.(Ⅰ)要注意區(qū)分是超幾何分布還是二項分布,分層從 “無有明顯拖延癥”里抽人.無明顯拖延癥的問卷的份數(shù)為 =0,1,2.利用“超幾何分布”即可得出分布列及其數(shù)學(xué)期望;(Ⅱ)根據(jù)“獨(dú)立性檢驗的基本思想的應(yīng)用”計算公式可得的觀測值,即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值4 和最小值1,設(shè).
(1)求的值;
(2)若不等式在區(qū)間上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列{an}中,前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若恒成立,求k的取值范圍;
(3)是否存在正整數(shù)m,k,使得am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).
(Ⅰ)求a和b的值;
(Ⅱ)求不等式ax2-(c+b)x+bc<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.魔術(shù)師從一個裝有標(biāo)號為1,2,3的小球的盒子中,無放回地變走兩個小球,每次變走一個,先變走的小球的標(biāo)號為m,后變走的小球的標(biāo)號為n,這樣構(gòu)成有序數(shù)對(m,n).寫出這個魔術(shù)的所有結(jié)果.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極小值;
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為:,當(dāng)時,若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時,試問函數(shù)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出轉(zhuǎn)點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,其前項和為,數(shù)列是公比大于0的等比數(shù)列,且, , .
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)令,求數(shù)列的前項和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) (e=2.71828,是自然對數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有M性質(zhì),下列函數(shù)中具有M性質(zhì)的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com