等差數(shù)列{an}的前n項和為Sn(n∈N*),已知a10=18,S5=-15.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和的最小值,并指出此時n的值.
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(1)由等差數(shù)列{an}中,a10=18,S5=-15,可得a1+9d=18,5a1+10d=-15,解得a1=-9,d=3,由此能求出數(shù)列{an}的通項公式.
(2)由a1=-9,d=3,an=3n-12,知Sn=
n
2
(a1+an)=
1
2
(3n2-21n)=
3
2
(n-
7
2
)2-
147
8
,由此能求出當n=3或4時,前n項的和Sn取得最小值S3=S4=-18.
解答: 解:(1)∵等差數(shù)列{an}中,a10=18,S5=-15,
∴a1+9d=18,5a1+10d=-15,
解得a1=-9,d=3,
∴an=3n-12.
(2)∵a1=-9,d=3,an=3n-12,
∴Sn=
n
2
(a1+an)=
1
2
(3n2-21n)=
3
2
(n-
7
2
)2-
147
8
,
∴當n=3或4時,前n項的和Sn取得最小值S3=S4=-18.
點評:本題考查等差數(shù)列的通項公式和前n項和公式的靈活運用,是基礎(chǔ)題.解題時要認真審題,仔細解答,注意配方法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△CEF中,CD⊥EF,且DE=1,DF=DC=2,A,B分別是FD,F(xiàn)C的中點.現(xiàn)將△ABF,△DEC分別沿AB,CD折起,使平面ABF,平面DEC都與四邊形ABCD所在的平面垂直.
(Ⅰ)求證:平面BDE⊥平面BCE;
(Ⅱ)求二面角B-CE-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c),其中a,b,c成公差為
3
的等差數(shù)列,求f(x)在[a,c]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=
9
2
,Sn+Sn-1=2an,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:實數(shù)a滿足函數(shù)y=x2-2ax+3a在(-1,2)為增函數(shù);命題q:實數(shù)a滿足函數(shù)y=
1
x-a
在(1,+∞)為減函數(shù).若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為非零實數(shù),且a2+b2+c2+1-m=0,
1
a2
+
4
b2
+
9
c2
+1-2m=0.
(1)求證
1
a2
+
4
b2
+
9
c2
36
a2+b2+c2

(2)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一顆質(zhì)地均勻的立方體骰子六個面標有1,2,3,4,5,6,連續(xù)拋擲骰子,設(shè)每次拋擲相互獨立,且每次拋擲每面出現(xiàn)概率相同,令第?次得到的點數(shù)為a?,若存在正整數(shù)k使a1+a2+…+ak=6,則稱k為幸運數(shù)字,求幸運數(shù)字為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

E為圓內(nèi)兩弦AB和CD的交點,過點E作AD的平行線交BC的延長線于點F.
(1)求證:△EFC∽△BFE;
(2)若AE=
1
2
EB,DE=6,CE=5,延長BA至點P,PA=AE且PD切圓于點D,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次學(xué)生考試的成績中隨機抽取50名學(xué)生的成績,分組與各組的頻數(shù)如下:[40,50),4;[50,60),1;[60,70),10;[70,80),11;[80,90),18;[90,100],6.估計本次考試成績的中位數(shù)是
 
.(保留1位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案