精英家教網 > 高中數學 > 題目詳情

【題目】某品牌新款夏裝即將上市,為了對新款夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數據:

連鎖店

A

B

C

售價x(元)

80

86

82

88

84

90

銷量y(元)

88

78

85

75

82

66

(1)分別以三家連鎖店的平均售價與平均銷量為散點,A店對應的散點為,求出售價與銷量的回歸直線方程;

(2)在大量投入市場后,銷量與單價仍然服從(1)中的關系,且該夏裝成本價為40/,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應定為多少元?(保留整數)

:,.

【答案】12

【解析】

1)求出三家連鎖店的平均年售價和平均銷量,根據回歸系數公式計算回歸系數,得出回歸方程(2)設定價為,得出利潤關于的函數,利用二次函數的性質確定出的最值.

1)三家連鎖店的平均售價和銷售量分別為,,

,

售價與銷量的回歸直線方程為

2)設定價為元,則利潤為

時,取得最大值,即利潤最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線的參數方程為(為參數,傾斜角),曲線C的參數方程為(為參數,),以坐標原點為極點,軸正半軸為極軸建立極坐標系。

(1)寫出曲線的普通方程和直線的極坐標方程;

(2)若直線與曲線恰有一個公共點,求點的極坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是圓的直徑,垂直圓所在的平面,是圓上的一點.

1)求證:平面 平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為拋物線的焦點,過點的直線與拋物線相交于、兩點.

1)若,求此時直線的方程;

2)若與直線垂直的直線過點,且與拋物線相交于點、,設線段、的中點分別為,如圖,求證:直線過定點;

3)設拋物線上的點在其準線上的射影分別為、,若的面積是的面積的兩倍,如圖,求線段中點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(Ⅰ)當曲線在點處的切線與直線垂直時,求的值;

(Ⅱ)若函數有兩個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的右焦點為,過點作與軸垂直的直線交橢圓于兩點(點在第一象限),過橢圓的左頂點和上頂點的直線與直線交于,且滿足,為坐標原點,,則該橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在底面是正方形的四棱錐中,平面,,的中點.

(1)求證:平面;

(2)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題滿分12分)已知橢圓,直線不過原點且不平行于坐標軸,有兩個交點,線段的中點為

)證明:直線的斜率與的斜率的乘積為定值;

)若過點,延長線段交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.

查看答案和解析>>

同步練習冊答案