【題目】(本題滿分12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,有兩個(gè)交點(diǎn),線段的中點(diǎn)為

)證明:直線的斜率與的斜率的乘積為定值;

)若過點(diǎn),延長(zhǎng)線段交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說明理由.

【答案】)詳見解析;()能,

【解析】

試題分析:(1)設(shè)直線 ,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示

2)第一步由 (Ⅰ)的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足的條件就說明存在,否則不存在.

試題解析:解:(1)設(shè)直線 ,,

,

直線的斜率,即

即直線的斜率與的斜率的乘積為定值

2)四邊形能為平行四邊形.

直線過點(diǎn),不過原點(diǎn)且與有兩個(gè)交點(diǎn)的充要條件是,

(Ⅰ)的方程為.設(shè)點(diǎn)的橫坐標(biāo)為

,即

將點(diǎn)的坐標(biāo)代入直線的方程得,因此

四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即

.解得,

,,,

當(dāng)的斜率為時(shí),四邊形為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對(duì)新款夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A

B

C

售價(jià)x(元)

80

86

82

88

84

90

銷量y(元)

88

78

85

75

82

66

(1)分別以三家連鎖店的平均售價(jià)與平均銷量為散點(diǎn),A店對(duì)應(yīng)的散點(diǎn)為,求出售價(jià)與銷量的回歸直線方程;

(2)在大量投入市場(chǎng)后,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40/,為使該新夏裝在銷售上獲得最大利潤(rùn),該款夏裝的單價(jià)應(yīng)定為多少元?(保留整數(shù))

:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間為函數(shù)的一個(gè)可等域區(qū)間.給出下列4個(gè)函數(shù):

; ;

其中存在唯一可等域區(qū)間可等域函數(shù)為( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時(shí)底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).

1)當(dāng)時(shí),若為真命題,求實(shí)數(shù)的取值范圍;

2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,左、右焦點(diǎn)分別為 ,點(diǎn)滿足: 在線段的中垂線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若斜率為)的直線軸、橢圓順次相交于點(diǎn)、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對(duì)新款夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A

B

C

售價(jià)x(元)

80

86

82

88

84

90

銷量y(元)

88

78

85

75

82

66

(1)分別以三家連鎖店的平均售價(jià)與平均銷量為散點(diǎn),A店對(duì)應(yīng)的散點(diǎn)為,求出售價(jià)與銷量的回歸直線方程;

(2)在大量投入市場(chǎng)后,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40/,為使該新夏裝在銷售上獲得最大利潤(rùn),該款夏裝的單價(jià)應(yīng)定為多少元?(保留整數(shù))

:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績(jī)?nèi)缦卤硭荆?/span>

學(xué)生

A1

A2

A3

A4

A5

數(shù)學(xué)(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

1)要從5名學(xué)生中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一人的物理成績(jī)高于90分的概率;

2)請(qǐng)?jiān)谒o的直角坐標(biāo)系中畫出它們的散點(diǎn)圖,并求這些數(shù)據(jù)線性回歸方程

查看答案和解析>>

同步練習(xí)冊(cè)答案