【題目】等差數(shù)列首項(xiàng)和公差都是,記的前n項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),公比為q,記的前n項(xiàng)和為

1)寫出構(gòu)成的集合A;

2)若將中的整數(shù)項(xiàng)按從小到大的順序構(gòu)成數(shù)列,求的一個(gè)通項(xiàng)公式;

3)若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得同時(shí)為(1)中集合A的元素?若存在,寫出所有符合條件的的通項(xiàng)公式,若不存在,請(qǐng)說明理由.

【答案】1;(2n為奇數(shù),;n為偶數(shù),;(3)存在;.

【解析】

1)直接由等差數(shù)列的求和公式得到,再把分別代入,即可求出集合;(2)寫出,根據(jù)整數(shù)項(xiàng)構(gòu)成,得到的整數(shù)倍,從而得到的通項(xiàng);(3)根據(jù)的前n項(xiàng)和為,根據(jù)同時(shí)為(1)中集合A的元素,進(jìn)行分類討論,從而得到的通項(xiàng)公式.

1)因?yàn)榈炔顢?shù)列的首項(xiàng)和公差都是,

所以.

分別代入上式,

得到

2)由(1)得,

因?yàn)?/span>中的整數(shù)項(xiàng)按從小到大的順序構(gòu)成數(shù)列

所以的整數(shù)倍,

①當(dāng),即時(shí),

此時(shí)的奇數(shù)項(xiàng),所以

所以

②當(dāng)時(shí),

此時(shí)的偶數(shù)項(xiàng),所以

所以

綜上所述,為奇數(shù),;為偶數(shù),;

3)①當(dāng)時(shí),,,

所以

同時(shí)為(1)中集合A的元素,

所以,,得,

所以

所以;

②當(dāng)時(shí),,

所以,

因?yàn)?/span>為正整數(shù),正整數(shù)大于

所以i)當(dāng)時(shí),,

得到,此時(shí),

所以,得

;

ii)當(dāng)時(shí),,得,此時(shí),,

所以,得,

;

iii)當(dāng),,時(shí),找不到滿足條件的.

綜上所述,存在符合條件的,

通項(xiàng)公式為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的方程為,過拋物線上一點(diǎn)作斜率為的兩條直線分別交拋物線兩點(diǎn)(三點(diǎn)互不相同),且滿足

1)求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

2)當(dāng)時(shí),若點(diǎn)的坐標(biāo)為,求為鈍角時(shí)點(diǎn)的縱坐標(biāo)的取值范圍;

3)設(shè)直線上一點(diǎn),滿足,證明線段的中點(diǎn)在軸上;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為,一個(gè)方向向量為的直線只有一個(gè)公共點(diǎn)

1)若且點(diǎn)在第二象限,求點(diǎn)的坐標(biāo);

2)若經(jīng)過的直線垂直,求證:點(diǎn)到直線的距離;

3)若點(diǎn)在橢圓上,記直線的斜率為,且為直線的一個(gè)法向量,且的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)E,F分別是棱長(zhǎng)為2的正方體的棱AB,的中點(diǎn).如圖,以C為坐標(biāo)原點(diǎn),射線CDCB分別是xyz軸的正半軸,建立空間直角坐標(biāo)系.

(1)求向量的數(shù)量積;

(2)若點(diǎn)M,N分別是線段與線段上的點(diǎn),問是否存在直線MN,平面ABCD?若存在,求點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,底面ABC,M BC的中點(diǎn),若底面ABC是邊長(zhǎng)為2的正三角形,且PB與底面ABC所成的角為. 求:

(1)三棱錐的體積;

(2)異面直線PMAC所成角的大小. (結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

1)設(shè),判斷上是否為有界函數(shù),若是,請(qǐng)說明理由,并寫出的所有上界的集合;若不是,也請(qǐng)說明理由;

2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,傾斜角為a的直線經(jīng)過拋物線的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn).

1)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線的方程;

2)若a為銳角,作線段AB的垂直平分線mx軸于點(diǎn)P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a為常數(shù).

1)討論函數(shù)的單調(diào)性:

2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案