【題目】某種計算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測到的數(shù)據(jù):
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的計算機(jī)數(shù)量(臺) | 10 | 20 | 39 | 81 | 160 |
則下列函數(shù)模型中,能較好地反映計算機(jī)在第天被感染的數(shù)量與之間的關(guān)系的是
A. B.
C. D.
【答案】D
【解析】
根據(jù)選項中的函數(shù),依次代入x值求出y的值,通過y的值與表格中所給出的y的值進(jìn)行比較,誤差越小則擬合度越高,誤差越大則擬合度越小,計算即可求解.
對于A選項,當(dāng)時,對應(yīng)的y值分別為,
對于B選項,當(dāng)時,對應(yīng)的y值分別為,
對于C選項,當(dāng)時,對應(yīng)的y值分別為,
對于D選項,當(dāng)時,對應(yīng)的y值分別為,
而表中所給的數(shù)據(jù)為,,當(dāng)時,對應(yīng)的y值分別為,
通過比較,即可發(fā)現(xiàn)選項D中y的值誤差最小,即能更好的反映與之間的關(guān)系. 故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π),其圖象最低點的縱坐標(biāo)是-,相鄰的兩個對稱中心是(,0)和(,0).求:
(1)f(x)的解析式;
(2)f(x)的值域;
(3)f(x)圖象的對稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下命題中,正確的命題是:______.
(1)是奇函數(shù),則的值為0;
(2)若,則(、且、);
(3)設(shè)集合,,則;
(4)若在單調(diào)遞增,則的取值集合為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,若存在區(qū)間,使在區(qū)間上恒成立,則稱區(qū)間是函數(shù)和的“公共鄰域”.設(shè)函數(shù)的反函數(shù)為,函數(shù)的圖像與函數(shù)的圖像關(guān)于點對稱.
(1)求函數(shù)和的解析式;
(2)若,求函數(shù)的定義域;
(3)是否存在實數(shù),使得區(qū)間是和的“公共鄰域”,若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)f(x)的定義域,判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)是否存在這樣的實數(shù)k,使f(k-x2)+f(2k-x4)≥0對一切恒成立,若存在,試求出k的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足(為常數(shù)),且=3.
(1)求實數(shù)的值,并求出函數(shù)的解析式;
(2)當(dāng)時,討論函數(shù)的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無限精細(xì)的結(jié)構(gòu)。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個黑色三角形內(nèi)去掉小三角形則當(dāng)時,該黑色三角形內(nèi)共去掉( )個小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com