【題目】對(duì)于函數(shù),若存在區(qū)間,使在區(qū)間上恒成立,則稱區(qū)間是函數(shù)公共鄰域.設(shè)函數(shù)的反函數(shù)為,函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱.

1)求函數(shù)的解析式;

2)若,求函數(shù)的定義域;

3)是否存在實(shí)數(shù),使得區(qū)間公共鄰域,若存在,求出的取值范圍;若不存在,說明理由.

【答案】1,;(2;(3)存在,

【解析】

1)將作為方程利用指數(shù)式和對(duì)數(shù)式的互化解出,然后確定原函數(shù)的值域即為反函數(shù)的定義域,再由對(duì)稱可得將換為換為,即可得到所求的解析式;

2)由對(duì)數(shù)的真數(shù)大于0,解不等式求交集,即可得到所求定義域;

3)設(shè),然后求出在閉區(qū)間,上的最小值與最大值,使最大值小于等于1,最小值大于等于,建立不等式組進(jìn)行求解即可.

解:(1)設(shè),則,

兩邊取對(duì)數(shù)得:

所以;

由函數(shù)的圖象與函數(shù)的圖象 關(guān)于點(diǎn)對(duì)稱,

可得,即為

2,函數(shù),

,且,

可得,

則函數(shù)的定義域?yàn)?/span>;

3)假設(shè)存在實(shí)數(shù),使得區(qū)間的“公共鄰域”,

因?yàn)?/span>,時(shí),函數(shù)有意義,

所以,所以,

由區(qū)間,的“公共鄰域”,

可得,

設(shè)

二次函數(shù)的對(duì)稱軸為,

所以,上為增函數(shù),

當(dāng)時(shí),取得最小值,當(dāng)時(shí)取得最大值,

從而可得在閉區(qū)間上的最小值與最大值分別為:

,,

當(dāng),時(shí),恒有成立的充要條件為:

,即為,

解得

則存在實(shí)數(shù),且,

時(shí)使得區(qū)間,的“公共鄰域”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個(gè)解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí),某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

2)求該地上班族的人均通勤時(shí)間的表達(dá)式;并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的邊AB所在直線方程為y3x,BC所在直線方程為yax+12,AC邊上的高BD所在直線方程為y=﹣x+8

1)求實(shí)數(shù)a的值;

2)若AC邊上的高BD,求邊AC所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.

(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.

(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )

A. 3寸B. 4寸C. 5寸D. 6寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種計(jì)算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測(cè)到的數(shù)據(jù):

1

2

3

4

5

被感染的計(jì)算機(jī)數(shù)量(臺(tái))

10

20

39

81

160

則下列函數(shù)模型中,能較好地反映計(jì)算機(jī)在第天被感染的數(shù)量之間的關(guān)系的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)高二甲、乙兩個(gè)同類班級(jí)進(jìn)行“加強(qiáng)‘語(yǔ)文閱讀理解’訓(xùn)練對(duì)提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率有幫助”的試驗(yàn),其中甲班為試驗(yàn)班(加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練),乙班為對(duì)比班(常規(guī)教學(xué),無(wú)額外訓(xùn)練),在試驗(yàn)前的測(cè)試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用題測(cè)試的平均成績(jī)(均取整數(shù))如下表所示:

60分及以下

61~70分

71~80分

81~90分

91~100分

甲班(人數(shù))

3

6

12

15

9

乙班(人數(shù))

4

7

16

12

6

現(xiàn)規(guī)定平均成績(jī)?cè)?0分以上(不含80分)的為優(yōu)秀.

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為“加強(qiáng)‘語(yǔ)文閱讀理解’訓(xùn)練對(duì)提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助;

(2)對(duì)甲乙兩班60分及以下的同學(xué)進(jìn)行定期輔導(dǎo),一個(gè)月后從中抽取3人課堂檢測(cè),表示抽取到的甲班學(xué)生人數(shù),求及至少抽到甲班1名同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某圓的極坐標(biāo)方程為

(1)圓的普通方程和參數(shù)方程;

(2)圓上所有點(diǎn)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案