【題目】斜率為的直線與拋物線交于兩點(diǎn),且的中點(diǎn)恰好在直線上.

(1)求的值;

(2)直線與圓交于兩點(diǎn),若,求直線的方程.

【答案】(1)1;(2)

【解析】

(1)設(shè)直線的方程為,代入拋物線的方程,利用韋達(dá)定理得到,由的中點(diǎn)在上,即可求解;

(2)根據(jù)圓的弦長(zhǎng)公式,分別求解,利用求得實(shí)數(shù)的值,進(jìn)而得到答案.

(1)設(shè)直線l的方程為y=kx+m,A(x1,y1),B(x2,y2),

得,x2-2kx-2m=0,

=4k2+8m,

x1+x2=2k,x1x2=-2m,

因?yàn)锳B的中點(diǎn)在x=1上,

所以x1+x2=2.

即2k=2,

所以k=1.

(2)O到直線l的距離d=,|CD|=2

所以|AB|=|x1-x2|=·=2·,

因?yàn)閨AB|=|CD|,

所以2·=2,

化簡(jiǎn)得m2+8m-20=0,

所以m=-10或m=2.

得-<m<2

所以m=2,

直線l的方程為y=x+2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是

(1)對(duì)于命題使得,則都有;

(2)已知,則

(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;

(4)“”是“”的充分不必要條件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 在回歸模型中,預(yù)報(bào)變量的值不能由解釋變量唯一確定

B. 若變量滿足關(guān)系,且變量正相關(guān),則也正相關(guān)

C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示。

X

-1

0

2

4

5

f(x)

1

2

0

2

1

下列關(guān)于函數(shù)的命題:

①函數(shù)是減函數(shù);

②如果當(dāng)時(shí),的最大值是2,那么t的最大值為4;③函數(shù)有4個(gè)零點(diǎn),則;

其中真命題的個(gè)數(shù)是( )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上.求:

(1) AD邊所在直線的方程;

(2) DC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上的點(diǎn)到它的兩個(gè)焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過(guò)這兩個(gè)焦點(diǎn),點(diǎn), 分別是橢圓的左、右頂點(diǎn).

)求圓和橢圓的方程.

)已知 分別是橢圓和圓上的動(dòng)點(diǎn)(, 位于軸兩側(cè)),且直線軸平行,直線 分別與軸交于點(diǎn), .求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線.

1)若直線與圓交于不同的兩點(diǎn),,當(dāng)時(shí),求的值;

2)若是直線上的動(dòng)點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)為,探究:直線是否過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象(

A. 所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

B. 所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

C. 所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

D. 所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視節(jié)目為選拔出現(xiàn)場(chǎng)錄制嘉賓,在眾多候選人中隨機(jī)抽取100名選手,按選手身高分組,得到的頻率分布表如圖所示.

1)請(qǐng)補(bǔ)充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;

組號(hào)

分組

頻數(shù)

頻率

1

5

0.050

2

0.350

3

30

4

20

0.200

5

10

0.100

合計(jì)

100

1.00

2)為選拔出舞臺(tái)嘉賓,決定在第3、45組中用分層抽樣抽取6人上臺(tái),求第3、4、5組每組各抽取多少人?

3)求選手的身高平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案