【題目】已知拋物線的焦點為F,直線與x軸的交點為P,與拋物線的交點為Q,且.
求拋物線的方程;
如圖所示,過F的直線l與拋物線相交于兩點,與圓相交于兩點兩點相鄰,過兩點分別作拋物線的切線,兩條切線相交于點M,求與的面積之積的最小值.
【答案】1;2.
【解析】【試題分析】(I)根據(jù)拋物線的定義以及,解得,故拋物線的方程為.(II)設出直線的方程,聯(lián)立直線方程和拋物線方程,寫出韋達定理,利用導數(shù)求得直線的方程,聯(lián)立兩個方程求得點的坐標.利用點到直線距離公式求得到的距離,由此求得兩個三角形面積乘積的表達式,進而求得最小值.
【試題解析】
由題意可知,丨QF丨,
由,則,解得:,
拋物線;
設l:,
聯(lián)立,整理得:,
則,
由,求導,
直線MA:,即,
同理求得MD:,
,解得:,則,
到l的距離,
與的面積之積丨AB丨丨CD丨,
丨AF丨丨DF丨,
,
,
當且僅當時取等號,
當時,與的面積之積的最小值1.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:
(1)BE=EC;
(2)ADDE=2PB2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表所示:
商店名稱 | A | B | C | D | E |
銷售額(x)/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額(y)/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出銷售額和利潤額的散點圖.
(2)若銷售額和利潤額具有相關關系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程=x+,其中=,=-.
(3)若獲得利潤是4.5百萬元時估計銷售額是多少(千萬元)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)某電子商務平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖顯示.
(1)已知[30,40)、[40,50)、[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求a,b的值.
(2)該電子商務平臺將年齡在[30,50)之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和X的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,已知曲線:,點的極坐標為,直線的極坐標方程為,且點在直線上.
(1)求曲線的極坐標方程和直線的直角坐標方程;
(2)設向左平移個單位長度后得到,到的交點為, ,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側面PAB⊥平面ABCD,點E是AB的中點.
(1)求證:PE⊥AD;
(2)若CA=CB,求證:平面PEC⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市擬定2016年城市建設A,B,C三項重點工程,該市一大型城建公司準備參加這三個工程的競標,假設這三個工程競標成功與否相互獨立,該公司對A,B,C三項重點工程競標成功的概率分別為a,b, (a>b),已知三項工程都競標成功的概率為 ,至少有一項工程競標成功的概率為 .
(1)求a與b的值;
(2)公司準備對該公司參加A,B,C三個項目的競標團隊進行獎勵,A項目競標成功獎勵2萬元,B項目競標成功獎勵4萬元,C項目競標成功獎勵6萬元,求競標團隊獲得獎勵金額的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com