(2012•徐匯區(qū)一模)對于數(shù)列{xn},從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為a1,公差為d的無窮等差數(shù)列{an}的子數(shù)列問題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無窮等差數(shù)列{an}中,是否存在無窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說明理由;
(3)他在研究過程中猜想了一個(gè)命題:“對于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無窮等比數(shù)列{cn},總可以找到一個(gè)子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?
分析:(1)由題意可得(a1+2d)2=a1(a1+4d),解之即可;
(2)可舉bn=4n-1,然后結(jié)合二項(xiàng)式定理證明即可;
(3)命題為假命題,由不等式的性質(zhì)可證ck+cn>2cm,故不成等差數(shù)列.
解答:解:(1)由題意可得a32=a1a5,…..(2分)
即(a1+2d)2=a1(a1+4d),解得d=0.…..(4分)
(2)由題意可得an=1+3(n-1),如bn=4n-1便為符合條件的一個(gè)子數(shù)列.…..(7分)
下面證明:因?yàn)閎n=4n-1=(1+3)n-1=1+
C
1
n-1
3+
C
2
n-1
32+…+
C
n-1
n-1
3n-1=1+3M,…..(9分)
這里M=
C
1
n-1
+
C
2
n-1
3+…+
C
n-1
n-1
3n-2為正整數(shù),
所以,bn=1+3M=1+3[(M+1)-1]是{an}中的第M+1項(xiàng),….(11分)
(3)該命題為假命題.….(12分)
由已知可得ck=aqk-1cm=aqm-1,cn=aqn-1
因此ck+cn=aqk-1+aqn-1,又2cm=2aqm-1,
故 (ck+cn)-2cm=aqk-1+aqn-1-2aqm-1=aqk-1(1+qn-k-2qm-k),…..(15分)
由于k,m,n是正整數(shù),且n>m,故n≥m+1,n-k≥m-k+1,
又q是滿足q>1的正整數(shù),則q≥2,
∴1+qn-k-2qm-k≥1+qm-k+1-2qm-k=1+qqm-k-2qm-k≥1+2qm-k-2qm-k=1>0,
所以,ck+cn>2cm,從而原命題為假命題.…..(18分)
點(diǎn)評:本題考查合情推理,涉及數(shù)列的等差等比的判定,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)為a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)為b,則b>a的概率是
1
5
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)已知cos(π+θ)=
4
5
,則cos2θ=
7
25
7
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)已知各項(xiàng)為正數(shù)的等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項(xiàng)am、an使得
aman
=2
2
a1
,則
1
m
+
4
n
的最小值為
11
6
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)由9個(gè)正數(shù)組成的矩陣
a11a12a13
a21a22a23
a31a32a33
中,每行中的三個(gè)數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個(gè)數(shù)之和等于9,則a22≥1.其中正確的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)若(x+
12x
)
n
的展開式中前三項(xiàng)的系數(shù)依次成等差數(shù)列,則展開式中x4項(xiàng)的系數(shù)為
7
7

查看答案和解析>>

同步練習(xí)冊答案