3.討論方程4x3+x-15=0在[1,2]內(nèi)實(shí)數(shù)解的存在性,并說(shuō)明理由.

分析 令f(x)=4x3+x-15,求導(dǎo)f′(x)=12x2+1>0,從而判斷函數(shù)的單調(diào)性,從而結(jié)合零點(diǎn)的判定定理求解即可.

解答 解:令f(x)=4x3+x-15,
則f′(x)=12x2+1>0,
∴f(x)=4x3+x-15在[1,2]上單調(diào)遞增,
又∵f(1)=4+1-15<0,f(2)=32+2-15<0,
∴f(x)=4x3+x-15在[1,2]上有且只有一個(gè)解.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及零點(diǎn)的判定定理的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{2}^{-x}+1,x≤0}\\{f(x-1),x>0}\end{array}\right.$
(1)作出函數(shù)f(x)的大致圖象;
(2)討論方程f(x)=a的根的情況;
(3)若方程f(x)=$\frac{-1}{x+2}+a$有兩個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的通項(xiàng)公式是an=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*).
(1)求證:數(shù)列{an}是遞增數(shù)列;
(2)若對(duì)一切大于1的正整數(shù)n,不等式an>$\frac{1}{12}$loga(a+1)+$\frac{2}{3}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線(xiàn)l的方程為x=1.則該方程表示( 。
A.經(jīng)過(guò)點(diǎn)(1,2)垂直x軸的直線(xiàn)B.經(jīng)過(guò)點(diǎn)(1,2)垂直y軸的直線(xiàn)
C.經(jīng)過(guò)點(diǎn)(2,1)垂直x軸的直線(xiàn)D.經(jīng)過(guò)點(diǎn)(2,1)垂直y軸的直線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.把一個(gè)圓錐截成圓臺(tái),已知圓臺(tái)的上、下底面半徑的比是1:2,母線(xiàn)長(zhǎng)10cm.圓臺(tái)側(cè)面展開(kāi)是一個(gè)$\frac{1}{4}$圓環(huán),求:
(1)圓錐的母線(xiàn)長(zhǎng);
(2)求圓臺(tái)的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.過(guò)兩點(diǎn)P1(2,2),P2(-3,-1)作一個(gè)橢圓,使它的中心在原點(diǎn),焦點(diǎn)在x軸上,求橢圓的方程,橢圓的長(zhǎng)半軸、短半軸的長(zhǎng)度以及離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓,這兩個(gè)定點(diǎn)做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距.
集合P={M|MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c為常數(shù):
(1)若a>c,則集合P為橢圓;
(2)若a=c,則集合P為線(xiàn)段;
(3)若a<c,則集合P為空集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,以原點(diǎn)O為圓心的兩個(gè)同心圓的半徑分別為3和1,過(guò)原點(diǎn)O的射線(xiàn)交大圓于點(diǎn)P,交小圓于點(diǎn)Q,P在y軸上的射影為M,動(dòng)點(diǎn)N滿(mǎn)足$\overrightarrow{PM}$=λ$\overrightarrow{PN}$且$\overrightarrow{PM}$•$\overrightarrow{QN}$=0.
(1)求點(diǎn)N的軌跡方程;
(2)過(guò)點(diǎn)A(0,3)作斜率分別為k1,k2的直線(xiàn)l1,l2與點(diǎn)N的軌跡分別交于E,F(xiàn)兩點(diǎn),k1•k2=-9,求證:直線(xiàn)EF過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x+$\frac{9}{x}$.
(1)判斷并證明f(x)在(3,+∞)上的單調(diào)性;
(2)求函數(shù)f(x)在[6,9]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案