在平面直角坐標系xOy中,△ABC的頂點B、C的坐標為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負半軸的交點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

(1);(2)

解析試題分析:(1)由于所求動點A滿足直線AB,AC的斜率乘積為,所以直接設(shè)A的坐標,代入化簡整理即得:,注意到△ABC中三個頂點不能共線,所以需去掉與軸相交的點,(2)要求的取值范圍,首先求出函數(shù)解析式,由題意確定l1的斜率為k為自變量,因為M 為l1與曲線E的交點,所以列方程組解出點M坐標,從而得出弦長;同理,只需將代k就可得到,因此△DMN的面積S=,所以,這可以看作關(guān)于1+k2的一個分式函數(shù),即,可以利用函數(shù)單調(diào)性求出其取值范圍.
試題解析:解(1)設(shè)頂點A的坐標為(x,y),則kAB,kAC 2分
因為kAB×kAC,所以,  即.(或x2+4y2=4).
所以曲線E的方程為.           4分
(2)曲線E與y軸負半軸的交點為D(0,-1).
因為l1的斜率存在,所以設(shè)l1的方程為y=kx-1, 代入,得
從而 6分
代k得
所以△DMN的面積S= 8分

因為k≠0且,k≠±2,令1+k2=t,
則t>1,且,t≠5,
從而
因為,且,
所以
從而,,
                 10分.
考點:直接法求軌跡方程,直線與圓錐曲線關(guān)系,求函數(shù)范圍

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,直線l1和l2相交于點M,l1⊥l2,點N∈l1,以A、B為端點的曲線段C上任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當?shù)淖鴺讼,求曲線段C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(-a,0).若|AB|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形CDEF內(nèi)接于橢圓,且它的四條邊與坐標軸平行,正方形GHPQ的頂點G,H在橢圓上,頂點P,Q在正方形的邊EF上.且CD=2PQ=

(1)求橢圓的方程;
(2)已知點M(2,1),平行于OM的直線l在y軸上的截距為m(m:≠0),l交橢圓于A,B兩個不同點,求證:直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A、B兩點,點C在拋物線的準線上,且BCx軸,證明:直線AC經(jīng)過原點O.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點為A(1,0),過C1的焦點且垂直長軸的弦長為1.

(1)求橢圓C1的方程;
(2)設(shè)點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M,N.當線段AP的中點與MN的中點的橫坐標相等時,求h的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A,B分別是橢圓C1:+=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:-=1上異于A,B的任意一點,a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E=1(a>b>0)的右焦點為F,過原點和x軸不重合的直線與橢圓E相交于AB兩點,且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,OP(O為坐標原點)與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

同步練習冊答案