精英家教網 > 高中數學 > 題目詳情

已知橢圓E=1(a>b>0)的右焦點為F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,OP(O為坐標原點)與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

(1)y2=1(2)垂直

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,△ABC的頂點B、C的坐標為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設頂點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設曲線E與y軸負半軸的交點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點分別為M,N.設l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的圓心在坐標原點O,且恰好與直線相切.
(1)求圓的標準方程;
(2)設點A為圓上一動點,AN軸于N,若動點Q滿足(其中m為非零常數),試求動點的軌跡方程.
(3)在(2)的結論下,當時,得到動點Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,在直角坐標系xOy中,點P到拋物線C:y2=2px(p>0)的準線的距離為.點M(t,1)是C上的定點,A,B是C上的兩動點,且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經過點(,1),O為坐標原點.
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.

(1)求實數b的值.
(2)求以點A為圓心,且與拋物線C的準線相切的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,O為坐標原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點MN,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設動點滿足:,直線的斜率之積為,證明:存在定點使
為定值,并求出的坐標;
(3)若在第一象限,且點關于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.

查看答案和解析>>

同步練習冊答案