已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F,過(guò)原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2+y2=的切線L與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過(guò)點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AN軸于N,若動(dòng)點(diǎn)Q滿足(其中m為非零常數(shù)),試求動(dòng)點(diǎn)的軌跡方程.
(3)在(2)的結(jié)論下,當(dāng)時(shí),得到動(dòng)點(diǎn)Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在直角坐標(biāo)系xOy中,點(diǎn)P到拋物線C:y2=2px(p>0)的準(zhǔn)線的距離為.點(diǎn)M(t,1)是C上的定點(diǎn),A,B是C上的兩動(dòng)點(diǎn),且線段AB被直線OM平分.
(1)求p,t的值;
(2)求△ABP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點(diǎn),已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過(guò)點(diǎn)(,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.
(1)求實(shí)數(shù)b的值.
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項(xiàng)為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(t,0),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(-2,0),B(2,0),點(diǎn)P為動(dòng)點(diǎn),且直線AP與直線BP的斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)D(1,0)的直線l交軌跡C于不同的兩點(diǎn)M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),且橢圓的長(zhǎng)軸長(zhǎng)為4,M、N是橢圓上的的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿足:,直線與的斜率之積為,證明:存在定點(diǎn)使
得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱,垂直于軸于點(diǎn),連接 并延長(zhǎng)交橢圓于點(diǎn),記直線的斜率分別為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com