已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時,求k的值.

(1) +=1   (2) k=±1

解析解:(1)由題設(shè)知,橢圓焦點在x軸上,
∴a=2.
由e==得c=,
∴b2=a2-c2=2.
∴橢圓C的方程為+=1.
(2)由消去y,
整理得(1+2k2)x2-4k2x+2k2-4=0.
設(shè)M(x1,y1),N(x2,y2).
則Δ=(-4k2)2-4(1+2k2)(2k2-4)>0(※)
且x1+x2=,x1·x2=,
∴|MN|=
=
=
=
=
設(shè)點A(2,0)到直線y=k(x-1)的距離為d,
則d=.
∴S△AMN=|MN|·d==,
解得k=±1,
代入(※)式成立,∴k=±1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,△ABC的頂點B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C的方程為-=1(a>0,b>0),離心率e=,頂點到漸近線的距離為.

(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點,A、B兩點在雙曲線C的兩條漸近線上,且分別位于第一、二象限.若,λ∈.求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點,求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在坐標(biāo)原點O,且恰好與直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點A為圓上一動點,AN軸于N,若動點Q滿足(其中m為非零常數(shù)),試求動點的軌跡方程.
(3)在(2)的結(jié)論下,當(dāng)時,得到動點Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直角坐標(biāo)系xOy中,點P到拋物線C:y2=2px(p>0)的準(zhǔn)線的距離為.點M(t,1)是C上的定點,A,B是C上的兩動點,且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點MN,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且+5=0.
 
(1)求橢圓E的離心率; (2)已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案