【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。
A.0,0
B.1,1
C.0,1
D.1,0
【答案】D
【解析】解:當輸入的x值為7時,
第一次,不滿足b2>x,也不滿足x能被b整數(shù),故b=3;
第二次,滿足b2>x,故輸出a=1;
當輸入的x值為9時,
第一次,不滿足b2>x,也不滿足x能被b整數(shù),故b=3;
第二次,不滿足b2>x,但滿足x能被b整數(shù),故輸出a=0
故選:D
【考點精析】解答此題的關(guān)鍵在于理解算法的條件結(jié)構(gòu)的相關(guān)知識,掌握條件P是否成立而選擇執(zhí)行A框或B框.無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行.一個判斷結(jié)構(gòu)可以有多個判斷框,以及對算法的循環(huán)結(jié)構(gòu)的理解,了解在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細分為兩類:當型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若在曲線(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”。
下列方程:
①;
②;
③y=3sinx+4cosx;
④
對應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下有四種說法,其中正確說法的個數(shù)為:
(1)命題“若am2<bm2”,則“a<b”的逆命題是真命題
(2)“a>b”是“a2>b2”的充要條件;
(3) “x=3”是“x2-2x-3=0”的必要不充分條件;
(4)“”是“”的必要不充分條件.
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)所給的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關(guān)系?附:獨立檢驗臨界值表
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ax3+bx+c為奇函數(shù)其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f/(x)的最小值為-12
(1)求a,b,c的值
(2)求函數(shù)極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(12分)
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sin(x+ ),1), =(4,4cosx﹣ )
(1)若 ⊥ ,求sin(x+ )的值;
(2)設(shè)f(x)= ,若α∈[0, ],f(α﹣ )=2 ,求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z1=(a2-4sin2θ)+(1+2cos θ)i,a∈R,θ∈(0,π),z2在復(fù)平面內(nèi)對應(yīng)的點在第一象限,且z=-3+4i.
(1)求z2及|z2|.
(2)若z1=z2,求θ與a2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com