【題目】《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個月(按30天計算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為(
A.
B.
C.
D.

【答案】B
【解析】解:由題意,該女子從第一天起,每天所織的布的長度成等差數(shù)列,
記為:a1 , a2 , a3 , …,an
其公差為d,
則a1=5,S30=390,
=390,
∴d=
故選:B.
由題意,該女子從第一天起,每天所織的布的長度成等差數(shù)列,其公差為d,由等差數(shù)列的前n項和公式能求出公差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)(個)

16

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線 )上一點, 是拋物線的焦點, .

(1)求拋物線的方程;

(2)已知 ,過 的直線 交拋物線 、 兩點,以 為圓心的圓 與直線 相切,試判斷圓 與直線 的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)|θ|< ,n為正整數(shù),數(shù)列{an}的通項公式an=sin tannθ,其前n項和為Sn
(1)求證:當(dāng)n為偶函數(shù)時,an=0;當(dāng)n為奇函數(shù)時,an=(﹣1) tannθ;
(2)求證:對任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線及點.

(1)求經(jīng)過點,且與直線平行的直線方程

(2)求經(jīng)過點,且傾斜角為直線的傾斜角的倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表所示:

商店名稱

A

B

C

D

E

銷售額(x)/千萬元

3

5

6

7

9

利潤額(y)/百萬元

2

3

3

4

5

(1)畫出銷售額和利潤額的散點圖.

(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程=x+,其中=,=-.

(3)若獲得利潤是4.5百萬元時估計銷售額是多少(千萬元)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學(xué)期望達到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖顯示.

(1)已知[30,40)、[40,50)、[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求a,b的值.
(2)該電子商務(wù)平臺將年齡在[30,50)之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過點,且與圓關(guān)于直線對稱.

(1)求兩圓的方程;

(2)若直線與直線平行,且截距為7,在上取一橫坐標(biāo)為的點,過點作圓的切線,切點為,設(shè)中點為.

(。┤,求的值;

(ⅱ)是否存在點,使得?若存在,求點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案