【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學期望達到最大值?

【答案】1詳見解析;(2.

【解析】試題分析:1由題意知的可能取值為200300,500,分別求出相應的概率,由此能求出的分布列.
2時, ;當時, ;當時, ;當時, .從而得到當時, 最大值為520元.

試題解析:(1)易知需求量可取200,300,500,

, ,

則分布列為:

(2)①當時, ,此時,當時取到;

②當時, ,

此時,當時取到;

③當時,

,此時;④當時,易知一定小于③的情況.

綜上所述,當時,取到最大值為520.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體中,點分別是棱的中點,是側面內一點,若平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn,點 (n∈N*)均在函數(shù)y=3x-2的圖象上.

(1)求數(shù)列{an}的通項公式;

(2)設bn,Tn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《張丘建算經》是我國南北朝時期的一部重要數(shù)學著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個月(按30天計算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)平面內動點到兩定點,距離之比為常數(shù),則動點的軌跡叫做阿波羅尼斯圓.現(xiàn)已知定點、,圓心為

(1)求滿足上述定義的圓的方程,并指出圓心的坐標和半徑;

(2)若,且經過點的直線交圓,兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過點且與圓相切 .

(I)求直線的方程;

(II)如圖,圓軸交于兩點,點是圓上異于的任意一點,過點且與軸垂直的直線為,直線交直線于點,直線交直線于點,求證:以為直徑的圓軸交于定點,并求出點的坐標 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前北方空氣污染越來越嚴重,某大學組織學生參加環(huán)保知識競賽,從參加學生中抽取40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖,若從成績是80分以上(包括80分)的學生中選兩人,則他們在同一分數(shù)段的概率為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線l過點P(3,2),且與x軸、y軸的正半軸分別交于A、B兩點,求△AOB面積最小時l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣1,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設anbn= ,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習冊答案