下列命題中:
①?x∈R,x2-x+≥0;
②?x∈R,x2+2x+2<0;
③函數(shù)y=2-x是單調(diào)遞增函數(shù).
真命題的個數(shù)是( )
A.0
B.1
C.2
D.3
【答案】分析:根據(jù)全稱命題和特稱命題的定義去判斷命題的真假,即可選出正確選項.
解答:解:①因為恒成立,所以①為真命題.
②因為x2+2x+2=(x+1)2+1≥1,所以不存在x∈R,x2+2x+2<0,所以②為假命題.
③因為,所以函數(shù)y=2-x是單調(diào)遞減函數(shù),所以③為假命題.所以真命題的個數(shù)為1個.
故選B.
點評:本題考查全稱命題和特稱命題的真假判斷.對全稱命題來講只要找到一個條件是結論不成立的,則全稱命題為假命題.對應特稱命題能找到一個滿足條件的,則特稱命題為真命題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在下列命題中:①?x∈R,x2+2>0;②?x∈N,x2≥1;③?x∈Z,x3<1;④?x∈Q,x2=3.其中,真命題有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①″x>2″是″x2-3x+2>0″的充分不必要條件;
②命題“若x2-3x+2=0,則x=1”的逆否命題為“若x=1,則x2-3x+2≠0”;
③對命題:“對?k>0,方程x2+x-k=0有實根”的否定是:“?k>0,方程x2+x-k=0無實根”;
④若命題p:x∈A∪B,則¬p是x∉A且x∉B.
其中正確命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:①?x∈R,(x-
3
)2>0
;②?x∈R,ex≥0;③?x∈Z,61=-3x+2;④?x∈R,3x2-6x+4=0.其中真命題的個數(shù)是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①“x>|y|”是“x2>y2”的充要條件;
②若“?x∈R,x2+2ax+1<0”,則實數(shù)a的取值范圍是(-∞,-1)∪(1,+∞);
③已知平面α,β,γ,直線m,l,若α⊥γ,γ∩α=m,γ∩β=l,l⊥m,則l⊥α;
④函數(shù)f(x)=(
1
3
x-
x
的所有零點存在區(qū)間是(
1
3
,
1
2
).
其中正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河北區(qū)一模)下列命題中:
①?x∈R,x2-x+
1
4
≥0;
②?x∈R,x2+2x+2<0;
③函數(shù)y=2-x是單調(diào)遞增函數(shù).
真命題的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案