已知橢圓過定點(diǎn)A(1,0),且焦點(diǎn)在x軸上,橢圓與曲線|y|=x的交點(diǎn)為B、C,F(xiàn)有以A為焦點(diǎn),過點(diǎn)B、C且開口向左的拋物線,拋物線的頂點(diǎn)坐標(biāo)為M(m,0)。當(dāng)橢圓的離心率e滿足時(shí),求實(shí)數(shù)m的取值范圍。
橢圓過定點(diǎn)A(1,0),則a=1,c=
,∴,由對稱性知,所求拋物線只要過橢圓與射線y=x(x≥0)的交點(diǎn),就必過橢圓與射線y=-x(x≥0)的交點(diǎn)
解方程組,得
,∴
設(shè)拋物線方程為:
又∵,∴


內(nèi)有根且單調(diào)遞增。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線,直線,試討論實(shí)數(shù)的取值范圍.
(1)直線與雙曲線有兩個(gè)公共點(diǎn);
(2)直線與雙曲線只有一個(gè)公共點(diǎn);
(3)與雙曲線沒有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是一個(gè)圓一條直徑的兩個(gè)端點(diǎn),是與垂直的弦,求直線交點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點(diǎn),以及一條直線,設(shè)長為的線段在直線上移動,求直線的交點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

=-1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為(    )
A.=1
B.=1
C.=1
D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)如圖△ABC為直角三角形,點(diǎn)M在y軸上,且,點(diǎn)C在x軸上移動,(I)求點(diǎn)B的軌跡E的方程;(II)過點(diǎn)的直線l與曲線E交于P、Q兩點(diǎn),
設(shè)的夾角為
的取值范圍;  (III)設(shè)以點(diǎn)N(0,m)為圓心,以
半徑的圓與曲線E在第一象限的交點(diǎn)H,若圓在點(diǎn)H處的
切線與曲線E在點(diǎn)H處的切線互相垂直,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn),則線段AB的方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)    
點(diǎn)在橢圓上,直線與直線垂直,O為坐標(biāo)原點(diǎn),直線OP的傾斜角為,直線的傾斜角為.
(I)證明: 點(diǎn)是橢圓與直線的唯一交點(diǎn);        
(II)證明:構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題




(2)只有一個(gè)交點(diǎn);(3)無交點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案