(2014·黃岡模擬)有純農(nóng)藥液一桶,倒出8升后用水補(bǔ)滿,然后又倒出4升后再用水補(bǔ)滿,此時(shí)桶中的農(nóng)藥不超過(guò)容積的28%,問(wèn)桶的容積最大為_(kāi)______.

 

【解析】設(shè)桶的容積為x升,顯然x>8,依題意,

得(x-8)-≤28%·x.

由于x>0,因而原不等式化簡(jiǎn)為9x2-150x+400≤0.

即(3x-10)(3x-40)≤0.解得≤x≤,故8<x≤,所以,桶的最大容積為升.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:解答題

已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.

(1)求f(x)的解析式;

(2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:解答題

(2014·洛陽(yáng)模擬)現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品.

(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率.

(2)如果從中一次取3件,求3件都是正品的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:選擇題

在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,從中任取一根,取到長(zhǎng)度超過(guò)30mm的纖維的概率是(  )

A.   B. 

C.  D.以上都不對(duì)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:解答題

(2014·天津模擬)已知函數(shù)f(x)=x2+2x+a.

(1)當(dāng)a=時(shí),求不等式f(x)>1的解集.

(2)若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:選擇題

設(shè)x,y滿足約束條件若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則+的最小值為(  )

A. B. C.1 D.2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:選擇題

下列推理是歸納推理的是(  )

A.A,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|,則P點(diǎn)的軌跡為橢圓

B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式

C.由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab

D.以上均不正確

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第八章 平面解析幾何(解析版) 題型:選擇題

(2014·孝感模擬)已知P是雙曲線-=1(a>0,b>0)上的點(diǎn),F1,F2是其焦點(diǎn),雙曲線的離心率是,且·=0,若△PF1F2的面積為9,則a+b的值為(  )

A.5 B.6 C.7 D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:選擇題

(能力挑戰(zhàn)題)已知f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則有(  )

A.e2014f(-2014)<f(0),f(2014)>e2014f(0)

B.e2014f(-2014)<f(0),f(2014)<e2014f(0)

C.e2014f(-2014)>f(0),f(2014)>e2014f(0)

D.e2014f(-2014)>f(0),f(2014)<e2014f(0)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案