在40根纖維中,有12根的長度超過30mm,從中任取一根,取到長度超過30mm的纖維的概率是(  )

A.   B. 

C.  D.以上都不對(duì)

 

B

【解析】在40根纖維中,有12根的長度超過30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題

已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),且f(5+x)=f(5-x),在[0,5]上只有f(1)=0,則f(x)在[-2 012,2 012]上的零點(diǎn)個(gè)數(shù)為(  )

A.804 B.805 C.806 D.808

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:填空題

(2014·成都模擬)復(fù)數(shù)的共軛復(fù)數(shù)為__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:填空題

(2014·石家莊模擬)若集合A={a|a≤100,a=3k,k∈N*},集合B={b|b≤100,b=2k,k∈N*},在A∪B中隨機(jī)地選取一個(gè)元素,則所選取的元素恰好在A∩B中的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:選擇題

一個(gè)射手進(jìn)行射擊,記事件E1:“脫靶”;E2:“中靶”;E3:“中靶環(huán)數(shù)大于4”;E4:“中靶環(huán)數(shù)不小于5”.則在上述事件中,互斥而不對(duì)立的事件共有(  )

A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:解答題

某食品公司為了解某種新品種食品的市場(chǎng)需求,進(jìn)行了20天的測(cè)試,人為地調(diào)控每天產(chǎn)品的單價(jià)P(元/件):前10天每天單價(jià)呈直線下降趨勢(shì)(第10天免費(fèi)贈(zèng)送品嘗),后10天呈直線上升,其中4天的單價(jià)記錄如表:

時(shí)間(將第x天記為x)x

1

10

11

18

單價(jià)(元/件)P

9

0

1

8

而這20天相應(yīng)的銷售量Q(百件/天)與x對(duì)應(yīng)的點(diǎn)(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時(shí)間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x).

(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測(cè)試結(jié)果應(yīng)將單價(jià)P定為多少元為好?(結(jié)果精確到1元)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:填空題

(2014·黃岡模擬)有純農(nóng)藥液一桶,倒出8升后用水補(bǔ)滿,然后又倒出4升后再用水補(bǔ)滿,此時(shí)桶中的農(nóng)藥不超過容積的28%,問桶的容積最大為_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第八章 平面解析幾何(解析版) 題型:解答題

(2014·廣州模擬)已知☉M:x2+(y-2)2=1,Q是x軸上的動(dòng)點(diǎn),QA,QB分別切☉M于A,B兩點(diǎn).

(1)如果|AB|=,求直線MQ的方程.

(2)求證:直線AB恒過一個(gè)定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:解答題

(2014·成都模擬)已知函數(shù)f(x)=x2++alnx(x>0).

(1)若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍.

(2)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1,x2總有不等式[f(x1)+f(x2)]≥f成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案