【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式.
【答案】
(1)解:由a1=1,nSn+1﹣(n+1)Sn= ,n∈N*,令n=1,則S2﹣2S1=1,
∴a2+1﹣2=1,解得a2=2.
(2)解:由nSn+1﹣(n+1)Sn= ,n∈N*,變形為: = ,
∴數(shù)列 是等差數(shù)列,首項為1,公差為 .
∴ =1+ = ,
∴Sn= ,
∴當n≥2時,Sn﹣1= ,
an=Sn﹣Sn﹣1= ﹣ =n,
∴an=n.
【解析】(1)令n=2可得a2的值;(2)對已知條件進行變形,可得數(shù)列 { } 是等差數(shù)列,進而可得數(shù)列 { } 的通項公式,再利用Sn與an的關系可得數(shù)列{an}的通項公式.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】當時,函數(shù)的值域是_________.
【答案】[-1,2]
【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),
∵﹣≤x≤,
∴﹣≤x+≤,
∴﹣≤sin(x+)≤1,
∴函數(shù)f(x)的值域為[﹣1,2],
故答案為:[﹣1,2].
【題型】填空題
【結束】
15
【題目】若點O在內,且滿足,設為的面積, 為的面積,則=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別與BC,AD交于點P,Q,若 =t .
(1)當t= 時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實數(shù)t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex .
(1)當a=﹣ 時,求f(x)在點P(1,f(1))處的切線方程;
(2)討論f(x)的單調性;
(3)當﹣ <a<﹣ 時,f(x)是否存在極值?若存在,求所有極值的和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學生會為了調查學生對2018年俄羅斯世界杯的關注是否與性別有關,抽樣調查100人,得到如下數(shù)據(jù):
不關注 | 關注 | 總計 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
根據(jù)表中數(shù)據(jù),通過計算統(tǒng)計量K2= ,并參考一下臨界數(shù)據(jù):
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此認為“學生對2018年俄羅斯年世界杯的關注與性別有關”,則此結論出錯的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ;
(1)若函數(shù) 在 上為增函數(shù),求正實數(shù) 的取值范圍;
(2)當 時,求函數(shù) 在 上的最值;
(3)當 時,對大于1的任意正整數(shù) ,試比較 與 的大小關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com