【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

【答案】
(1)解:f(x)=|x﹣1|﹣|2x+1|= ,

由分段函數(shù)的圖象畫法可得圖象如右


(2)解:由(1)知,當x=﹣ 時,f(x)的最大值為 ,即m= ;

∴a2+b2+2c2= ,

設a2+b2+2c2=a2+tb2+(1﹣t)b2+2c2≥2 ab+2 bc,

令2 :2 =1:2,即8(1﹣t)=16t 得:t= ,

∴a2+b2+2c2=a2+ b2+ b2+2c2≥2 ab+4 bc= (ab+2bc)

∴ab+2bc≤ (a2+b2+2c2)= (當且僅當a2=c2= ,b2= 時取“=”號)


【解析】(1)討論x的范圍:x≤﹣ ,﹣ <x≤1,x≥1,去掉絕對值,寫出分段函數(shù)的形式,畫出圖象;(2)通過圖象可得最大值m,設a2+b2+2c2=a2+tb2+(1﹣t)b2+2c2≥2 ab+2 bc,令2 :2 =1:2,求出t的值,即可得到所求最大值.
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量問題,全民關注,有需求就有研究,某科研團隊根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達到18%以上,則認定霧炮除塵有效.

(1)根據(jù)以上數(shù)據(jù)估計霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個區(qū)域,每個區(qū)域投放3臺霧炮進行除塵(霧炮之間工作互不影響),若在一個區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進行治理,求后期投入費用的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代算書《孫子算經(jīng)》中有一著名的問題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?后來,南宋數(shù)學家秦九韶在其著作《數(shù)學九章》中對此類問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術”,如圖2程序框圖的算法思路源于“大衍求一術”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=( )

A.1
B.6
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當a=﹣ 時,求f(x)在點P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當﹣ <a<﹣ 時,f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代算書《孫子算經(jīng)》中有一著名的問題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?后來,南宋數(shù)學家秦九韶在其著作《數(shù)學九章》中對此類問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術”,如圖2程序框圖的算法思路源于“大衍求一術”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=( )

A.1
B.6
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1求函數(shù)的定義域;

2判斷函數(shù)的奇偶性,并說明理由;

3判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運行如圖所示的程序框圖,則輸出結果為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案